
Chapter 15

Determi:ning Processor
Types

There are number of utility programs on the market today which can tell you about
the configuration of a PC. This information can include the amount of available
RAM, the running DOS version and the type of processor the PC has.

This information can be very useful for developing programs in high level
languages, since code generation can be adapted to the particular processor. For
example, both Microsoft C and Turbo C allow special code generation for the
8088, the 80286 and the 80386, which makes full use of the capabilities of the
particular processor and instruction sel This can dramatically improve performance
for programs which work with large groups of data. One way to take advantage of
this would be to compile the program once for each of the three processor types.
Then a program could be developed to serve as the boot for the actual program.
This boot program would determine the type of processor being used and load the
main program version most compatible with the processor.

Which processor is which?

This raises the question of how to determine which type of processor is being
used, since unlike other configuration information, we cannot find this out by
making a BIOS or DOS call. Unfortunately, there is no machine language
instruction which instructs the processor to reveal its identity, so we have to use a
trick. This trick relies on a condition which, according to a few hardware
manufacturers, is totally impossible.

This is a test which involves the different ways the various processors execute
certain machine language instructions. Although processors from the 8086 to the
80386 are upwardly software compatible, the development of this processor series
brought small changes in the logic of certain instructions. Since these changes are
only noticeable in rare situations, a program developed for the 8088 processor will
also run correctly on all other processors in the Intel 80x86 series. But if we

653

15. Determining Processor Types PC System Programming

deliberately put a processor into such a situation, we can detennine its identity
from its behavior.

These differences are only noticeable at the assembly language level, so our test
program must be written in assembly language. We have included listings at the
end of this chapter which allow the test routine to be included in Pascal, C and
BASIC programs as well.

NO
80386

YES
80186/88

NEe V20/V30

YES
•• 88 processor

Determining processor type on a PC

654

Abacus 15. D«urmining Processor Types

As the flowchart above shows, the routine consists of several tests which can
distinguish various processor types from one another. The next test executes only
when the current test returns a negative response.

Flag register test

The first test concerns the different layout of the flag register in the different
processors. The meaning of bits 0 to 11 is the same in all processors, but bits 12­
15 are also defmed in processors from 80286 up (through the introduction of the
protected mode). This can be noticed in the instructions PUSHF (push the contents
of the flag register onto the stack) and POPF (fetch the contents of the flag register
from the stack). On processors through the 80188 these instructions always set
bits 12-15 of the flag register to 1, but this doesn't occur in the 80286 and 80386
processors. The first test in the routine takes advantage of this fact, in which it
places the value 0 on the stack and then loads it into the flag register with the
POPF instruction. Since there is no instruction for comparing the contents of bits
12 to 15, the flag register is pushed back onto the stack with a PUSHF
instruction. This is so we can get the contents into the AX register with pop AX,
where we can test bits 12 to 15.

If all four bits are set, then the processor cannot be an 80286 or an 80386, and the
next test is performed. However, if not all four bits are set, then we have reduced
the set of possible processors to the 80826 and the 80386. Since POPF also
operates differently between these two processors, it is easy to tell them apart We
simply repeat the whole process, this time by placing the value 07000H on the
stack instead of O. When the flag register is loaded with the POPF instruction, bits
12 to 14 of the flag register will be set to 1. If these bits are no longer 1 when the
contents of the flag register are fetched from the stack, then the processor must be
an 80286, which, in contrast to the 80386, sets these three bits back to O. The test
is then concluded for these two processors.

Narrowing down the field

If the processor did not pass the first test, the following test will show if it is an
80188 or 80186. With the introduction of these two processors, the shift
instructions (like SHL and SHR) were changed in the way they use the CL register
as a shift counter. While in previous processors the number of shifts could be
between 0 and 255, the upper three bits of the CL register are now cleared before
the instructions starts, limiting the number of shift operations. This makes sense
since a word will contain all zeros anyway after at most 16 shifts (17, if the carry
flag is shifted). Additional shifts will cost valuable processor time and will not
change the value of the argument at all.

The second test makes use of this behavior by shifting the value OFFH in the AL
register 2lH positions to the right with the SHR instruction. If the processor
executing the instruction is an 80188 or later type, the upper three bits of the shift
counter will ftrst be cleared, and only one shift is performed instead of21H shifts.

,ss

15. Determining Processor Types PC System ProgrtllNlling

021H (00100001(b» number of shifts
& 01fH (OOOlllll(b» mask out the upper three bits

00lH (OOOOOOOl(b» actual number of shifts

Unlike its predecessors, which would actually shift the value OFFH to the right
021H times and return the value 0, the 80188 and 80186 will return the value
07FH. By checking the contents of the AI. register after the shift we can easy tell
if the processor is an 80188 or 80186 (AI. not zero), or not (AI. equal to 0). If the
processor also fails this test, then we know it is an 808818086 or V20/30.

VlO and V30 processors

The V20 and V30 processors are 8088/8086 "clones" which use the same
instruction set as their Intel cousins, but which operate considerably faster due to
the optimization of internal logic and improved manufacturing. This speed also
results in a higher cost, so some PC manufacturers avoid using these processors.

In addition to the faster execution of instructions, these processors also corrected a
small error which occurs in the 8088 and 8086 processors. Ifa hardware interrupt
is generated during the execution of a string instruction (such as LOOS) in
connection with the REP(eat) prefix and a segment override, the execution of this
instruction will not resume after the interrupt has been processed. This can easily
be determined because the ex register, which functions as the loop counter in this
instruction, will not contain a 0 as expected after the instruction.

We make use of this behavior in the test program by loading the ex register with
the value OFFFFH, and then executing a string instruction 65535 times with the
REP prefIX and segment override. Since even a fast processor needs some time to
do this, a hardware interrupt will be generated during one of the 65535 executions
of this instruction. In the case of the 8088 or 8086, the instruction will not be
resumed after the interrupt, and the remaining "loop passes" will not execute. The
test program verifies this from the ex register after the instruction has been
executed.

Data bus test

Once we have distinguished between the 8088/8086 and the V20/30, one last test
is performed for all processors (except the 80286 and 80386). In this test we
determine if the processor is using an 8-bit or a 16-bit data bus. This allows us to
tell the difference between the 8088 and 8086, the V20 and V30, or the 80188 and
the 80186. We cannot determine the width of the data bus with assembly language
commands, but the data bus width is related to the length of the instruction queue
within the processor.

Queue

The queue stores the instructions following the instruction currently being
executed. Since these instructions are taken from the queue and not from memory,

656

Abacus 15. Determining Processor Types

this improves execution speed. This queue is six bytes long on processors with a
16-bit data bus, but only four bytes long on processors with an 8-bit data bus.

The last test is based on this difference in length. The string instruction STOSB
(store string byte) used in connection with the REP prefIX modifies three bytes in
the code segment immediately following the STOSB instruction. These bytes are
placed so that they are found within the queue on a processor with a six-byte
queue; the processor won't even notice the change. On a processor with a four-byte
queue, these instructions are still outside the queue, so the modified versions of the
instructions are loaded into the queue. The program makes use of this by
modifying the instruction INC OX, which increments the contents of the OX
register which contains the processor code in the routine. This instruction is
executed only when the processor has a six-byte queue, and the instruction was
already in the queue by the time the modification was performed.

On a processor with a four-byte queue, this instruction is replaced by the STI
instruction, which doesn't affect the contents of the OX register (or the processor
code). STI sets the interrupt bit in the processor flag register. Since this procedure
always increments the processor code by one for 16-bit processors, the processor
codes in the routine are chosen so that the code for the 16-bit version of a
processor always follows the code for the 8-bit version of the same processor.

The following BASIC and Pascal programs use OATA orinline statements instead
of assembly language. However, we included the assembly language versions of
these statements here so that you can follow the program logic. The C
implementation requires direct linking of C and the assembly language routine.

BASIC listing: PROCB.BAS

100 1*****.****************.***************.********.************._****­
110 '* PRO C B120 1* __ *'*'

130 ,* Task : Examines the main processor and tells the *,

140 ,* user the processor type *'

150 '* Author : MICHAEL TISCHER *,

160 '* Developed on : 09/06/1988 .'

170 ,* Last update : OS/23/1989 *'

180 ••••*••*••**•••***••••***•••**••••**•••**.*••*••••••••***••**•••••• ­
190 '

200 CLS : KEY OFF

210 PRINT"ATTENTION: This program should only be run when GW-BASIC is loaded from"

220 PRINT"the DOS prompt using the command <GWBASIC /m:60000>."

230 PRINT: PRINT"If this isn't the case, press the <s> key to stop."

240 PRINT"otherwise, press any other key to continue... ";

250 A$ - INKEY$: IF A$ - ·s" THEN END

260 IF A$ - ". THEN 250

270 CLS 'Clear screen

280 GOSUB 60000 'Install assembler routine

290 CALL PT(PTYP%) 'Determine processor type

300 RESTORE 1000 'Read DATA statements starting at line 1000

310 FOR n - 0 TO PTYP% READ P$: NEXT 'Get processor name

320 PRINT "PROCB - (c) 1988 by MICHAEL TISCHER"

330 PRINT "Your PC contains a(n) "iPS;" processor."

340 END

350 '

1000 DATA "INTEL 8088", "INTEL 8086", "NEC V20", "NEC V30"

1010 DATA "INTEL 80186", "INTEL 8018S", "INTEL 80286", "INTEL 80386"

657

15. Determining Processor Types PC System Programming

1020 '
60000 .*.***••********••*.***************.*****.*.********.************'
60010 '* Routine for determining onboard processor type *'
60020 ,*--*,
60030 '. Input : none *,
60040 ,* Output: PT is the starting address of the assembler routine *,
60050 ,* Call to the routine:CALL PT(PTYPt) *,
60060 1*****.*.***************.***********•••*************••*••••*****•.
60070 '
60080 PT-60000! 'starting address of BASIC segment routine
60090 DEF SEG 'Define BASIC segment
60100 RESTORE 60140
60110 FOR It - 0 TO 105 READ X% POKE PT+It, X% NEXT 'POKE routine
60120 RETURN 'Return to caller
60130 '
60140 DATA 85,139,236,156, 6, 51,192, 80,157,156, 88, 37, 0,240, 61
60150 DATA 0,240,116, 19,178, 6,184, 0,112, 80,157,156, 88, 37, 0
60160 DATA 112,116, 54,254,194,235, 50,144,178, 4,176,255,177, 33,210
60170 DATA 232,117, 18,178, 2,251,190, 0, 0,185,255,255,243, 38,172
60180 DATA 11,201,116, 2,178, 0, 14, 7,253,176,251,185, 3, 0,232
60190 DATA 23, 0,250,243,170,252,144,144,144, 66,144,251, 50,246,139
60200 DATA 126, 6,137, 21, 7,157, 93,202, 2, 0, 95,131,199, 9,235
60210 DATA 227

Assembler listing: PROCBA.ASM

i**************************************·**********··**************·****i
;* PROCBA *i

i*--*i
; * Task: Detennines the type of processor installed in *;
;* a PC *i
;* This BASIC version of the program converts *;
;* DATA statements into machine language, and *;
, executes this code in the BASIC program *;
i*--*;
; * Author MICHAEL TISCHER * ;
; * Developed on : 09/05/1988 *;
;* Last update : OS/24/1989 *;
;*--*;
; * assembly MASM PROCBA; * ;
; * LINK PROCBA; *;
; * EXE2BIN PROCBA PROCBA. BIN *;
; * convert to DATA statements and add to * ;
; * a BASIC program • ;
;**;

i=- Constants ===-======================-==~---=-==-=-=====----=====-===

p_80386 equ 7 ; Codes for different processor
p_80286 equ 6 itypeS
p_80186 equ 5
p_80188 equ 4
p_v30 equ 3
p_v20 equ 2
p 8086 equ 1
p:::8088 equ 0

; === Code =====1======---=-=---=-===-=-==--========__==-====.=--=-=­

code segment para 'CODE' ;Definition of CODE segment

org 100h

assume cs:code, ds:code, ss:code, es:code

getproc proc far ;GW-BASIC waits for CALL FAR procedure

push bp ;Push BP onto stack
mov bp,sp ;Move SP after BP

658

Abacus 15. Determining Processor Types

pushf
push es

;Save contents of flag registers
;Mark ES

;-- test for 80386/80286 - ----------------------------------­

xor ax,ax
push ax
popf
pushf
pop ax
and aX,OfOOOh
cmp aX,OfOOOh
je not_a_386

;Set AX to ° and
;push onto stack
;Get as flag register from stack
;Put on stack again and
; return to AX
;Oon't clear the top 4 bits
;Are bits 12-15 all equal to 1?
;YES-> Not an 80386 or 80286

;-- Test to see if it should be handled as 80386 or 80286

mav dl,p 80286
mav ax,07000h
push ax
popf
pushf
pop ax
and aX,07000h
je pende

;This narrows it down to one of the
;two processors
;Push value 07000H onto the stack
;Return as flag register
;and push back onto stack
;Pop off and return to AX register
;00 not mask bits 12-14
;Are bits 12-14 equal to O?
;YES-> Treat it as an 80286

inc
jmp

dl
pend

;No-> Treat it as an 80386
;Test ended

;-- Test for 80186 or 80188 ---------------------------------­

mav
mav
mav
shr
jne

dl,p BOlSS
al,Offh
cl,02lh
al,cl
tB8_86

;Load code for 80188
;Set all bits in AL register to
;Number of shift operations after CL
;Shift AL CL times to the right
;If AL<>O then it must be handled as
;80188 or 80186

;-- Test for NEC V20 or V30 --- -----------------------------­

mov
sti
mav
mov
rep

or
je

dl,p_v20

si,O
cX,Offffh
lods byte

ex,ex
t88 86

;Load code for NEC V20
;Interrupts should be enabled starting
;with the first byte in ES
;Read a complete segment

ptr es:[sij ;REP with segment override
;works only with NEC V20/V30 chips
;Has the complete segment been read?
;YES--> it's a V20 or V30

mov dl,p_8088 ;NO--> must be an B088 or 8086

;-- Test for •••88 or ••• B6 1 V20 or V30 --------------------­

t88 86 label near

tS6_1:

push cs
pop es
std
mov al,Ofbh
mov ex, 3
call get_di
cli
rep stosb
cld
nop
nop
nop

;Push cs onto the stack
;and pop off to ES
;Using string inst. count backwards
;Code for ·STI"
;Execute string instruction 3 times
;Call starting address 01
;Suppress interrupts

;Using string inst. ocunt backwards
;Fill queue with dummy command

659

15. Determining Processor Types 	 PC System Programming

inc dx ; Increment processor code
nop
st! ;Re-enable interrupts

i--­
pend 	 label near ;End processor test

xor dh,dh ;Set hiqh b¥te or processor code to 0
mov di, [bp+6] ;Get addr. of processor code variables
mov [di] ,dx ;Place processor code in this variable
pop es ;Pop off stack and place in ES
popf ;Pop flaq reqister off of stack and
pop bp ;Return BP
ret 2 ;FAR return takes us back to GW-BASIC

;Remove parameters from stack

qetproc 	 endp ; End of PROG procedure

;-- GET_DI Check with 01 for 88/S6 Test ------------------------------- ­

proc near

pop di ;Pop return address off of stack
add di,9 ;Remove starting 9 bytes from it
jrnp tS6_1 ;Return to the test routine

i ="'" End ::IIC=...====""===-==_--==--=-__=___=====_--=_~____

code 	 ends ;End of CODE seqment
end getproc

Pascal 	 listing: PROCP.PAS

(**********************************.***********************************)
{* 	 PROCP *}
{*--*}
{* Task : Examines the processor type in the PC and *}
{ * tells the user the processor type * }
{*--*}
(* Author MICHAEL TISCHER *)
{* Developed on : OS/16/198S *'
{* Last update : OS/23/19S9 *'
{********•••****••******.*****.****.*.**********••***.*****************}

proqram PROCP;

type ProNames - array[0 •• 7] of string[ll]; { Array of processor names

canst ProcName ProNames = ('INTEL SOSS', Code 0
'INTEL S086', Code 1
'NEC V20', Code 2
'NEC V30', Code 3
'INTEL SOlSS', Code 4
'INTEL SOlS 6' , Code 5
'INTEL S0286', Code 6
'INTEL S03S6' ,; Code 7

{*******.********.***********.************************.****************}
{* GETPROC: Determines processor type in PC *'
{* Input none * ,
{* Output Processor code (see CONST) *}
1* Info This function can be used in a proqram when added as *'
(* a UNIT *)
{*****••***********.***}

function getproc : byte;

begin { Machine code routine for determining processor type ,

660

Abacus 	 15. Determining Processor Types

inline (
$9C/$Sl/$S2/sS7/sS6/S06/s331$C0/s50/s9D/$9C/$58/$25/$001
$FO/s3D/SOO/SFO/$74/$13/SB2/$06/SB8/S00/S70/sS0/$9D/S9C1
SS8/S25/$00/$70/$74/s36/SFE/$C2/$EB/S32/$90/SB2/S04/SBOI
SFF/$B1/$2l/$D2/SE8/$7S/s12/SB2/S02/sFB/$BE/sOO/$00/sB91
$FF/SFF/SF3/S26/SAC/SOB/sC9/S74/$02/$B2/S00/S0E/s07/SFD1
SBO/SFB/SB9/$03/S00/SE8/s16/S00/SFA/SF3/$AA/SFC/s90/S901
S90/$42/S90/SFB/S88/S56/SFF/S07/S5E/S5F/$5A/$59/$9D/SEB/
$07/$90/S5F/S83/$C7/S09/SEB/SE4

) ;
end;

{******** ••••************.***}
{** 	 MAIN PROGRAM **1
{************.*******••••••*********••••• ******** ••**.*******.*****••**}

begin
writeln('PROCP - (c) 1988 by MICHAEL TISCHER');
writeln(f13flO, 'Your PC contains a(n) " ProcName[getproc),

. processor.');
writeln(f13flO);

end.

Assembler listing: PROCPA.ASM

i**************·*****···*************····************··******········**i
;* 	 PRO CPA *;

;*--------------------------~---wi
;* Task Determines the type of processor installed in * ;
;* a PC. *;
;* This version is converted by INLINE statements *;
;* and then used by a Pascal program. *;
;*--*;
; * Author MICHAEL TISCHER * ;
; * Developed on : 08/2211988 *;
;* Last update : 05/24/1989 *;
i*--*;
; * assembly MASM PROCPA; *;
;* LINK PROCPA; *;
;* EXE2BIN PROCPA PROCPA.BIN *;
;* ••• convert to INLINE statements and add to *;
; * Pascal programs * ;
,.**­,

; ...= Constants ==--=-=====""'=-=-~========.:=-=-=--==...=----=====-===

p_80386 equ 7 ;Codes for different types of
p_80286 equ 6 ; processors
p_80l86 equ 5
p 80188 equ 4
p':::v30 equ 3
p_v20 equ 2
p_8086 equ 1
p_8088 equ 0

; -- Code ====-=======-==--==~===----==-"""""'=--=======-=

code segment para 'CODE' 	 ;Definition of CODE segment

org 100h

assume cs:code, ds:code, ss:cod.e, 	es:;code

getproc proc near 	 ;This program is the essential main
; program

pushf ;Get contents of flag registers
push ex ;Get contents of all altered registers
push dx ;and push them onto stack
push di

661

15. Determining Processor Types PC System ProgrtlllUlling

push si

push es

;-- Test for 80386/80286 ------------------------------------ ­

xor ax,ax ,Set AX to 0
push ax ;and push onto stack
popf ,Pop into flaq reqister from stack
pushf ;Return to stack
pop ax ;And pop back into AX
and aX,OfOOOh ;Avoid clearinq the to 4 bits
c:mp aX,OfOOOh ;Are bits 12-15 all equal to 1?
je not_a_386 ;YES->Not an 80386 or an 80286

;-- Test whether to handle it as an 803B6 or 80286 ---------- ­

mov dl, p 80286 ;This narrows it down to one of
rnov ax,07000h ;the two processors
push ax ;Push value 7000H onto the stack
popf ;Pop off as flaq reqister
pushf ;and push it back onto the stack
pop ax ;Pop off and return to AX reqister
and aX,07000h ;Avoid maskinq bits 12-14
je pende ;Are bits 12-14 all equal to 0;

;YES->Handle it as an 80286

inc dl ;No->Handle it as an 80386
jmp pende ;End of test

;-- Test for 801B6 or 80188 --------------------------------- ­

not a 386 label near

rnov dl,p B01BB ;Load code for B01BB
mov al,Offh ;Set all bits in AL reqister to 1
mov cl,021h ;Number of shift operations after CL
shr al,cl ;Shift AL CL times to the riqht
jne tB8 B6 ;If AL is unequal to 0 it must be

;handled as an B0188 or 80186

;-- Test for NEC V20 or V30 --------------------------------- ­

mov dl,p_v20 ;Load code for NEC V20
sti ;Interrupts should be enabled startinq
mov si,O ;with the first byte in ES
mov cX,Offffh ;Read a complete seqment
rep lods byte ptr es:[si] ;REP wi seqment override only

;works with NEC V20 and V30 processors
or ex, ex ;Has complete seqment been read?
je t88 86 ;YES-> V20 or V30

mov dl,p_8088 ;No-> Must be an 8088 or 8086

;-- Test for 8088 or 8086/V20 or V30 ------------------------ ­

tB8 B6 label near

push cs ;Push CS onto stack
pop es ; Pop off to ES
std ;Usinq strinq inst. count backwards
rnov al,Ofbh ;Instruction code for ·STI"
rnov ex,3 ;Execute strinq instruction 3 times
call qet_di ;Get startinq address of DI
c11 ;Suppress interrupts
rep stosb
cld ;Usinq strinq inst. count backwards
nop ;Fill queue with dummy instruction
nop
nop

662

Abacus 	 15. Determining Processor Types

inc dx ;Increment processor code
nop

'Lend: 	 sti ;Re-enable interrupts

;--­
pende 	 label near ; End testing

mov [bp-1],dl ;Place processor code in return var.
pop es ;Pop saved registers from
pop si ; stack
pop di
pop dx
pop ex
popf ;Pop flag register from stack and
jmp endit ;Return to calling program

getproc 	 endp ; End of PROG procedure

;-- GET_DI examines 01 for 88/86 test --------------------------------- ­

proc near

pop di ;Pop return address off of stack
add di,9 ;Take first 9 bytes from there
jrnp t86_1 ;Return to the testing routine

endit 	 label near

i-- End =---====-----=--===--=--==-=-=~

code 	 ends ;End of CODE segment

end getproc

C listing: PROCC.C

/*•••****************••••• ***/
1* PRO C C *1
1*--*1
1* Task : Determines the processor type in a PC *1
1*--*1
1* Author MICHAEL TISCHER *I
1* Developed on : 08/14/1988 *1
1* Last update : 06/22/1989 *1
1*--*1
1* (MICROSOFT C) *I
1* Creation CL lAS Ic PROCC.C *1
1* LINK PROCC PROCCA *I
1* Call PROCC *I
1*--*1
1* (BORLAND TURBO C) *1
1* Creation Create a project file containing these lines: *1
1* PROCC *1
1* PROCCA.OBJ *1
/*******••*****••• *****************••••••**••*******.*****••*****•••*.*/

extern int getproc 0 1* Includes the assembler routine *1

/.**********************••• ***********************••••*****************/
1** 	 main program **1
,*********••*****••••*.*••••******************.***•••••••••************/

void main()

{

static char * procname [] - 1* Vector wi pointers to proc. names *1
-Intel 8088-, 1* Code 0 *1
-Intel 8086-, 1* Code 1 *1
-NEC V20-, 1* Code 2 *1

663

15. Determining Processor Types 	 PC System Programming

"NEC VJO", /* Code 3 */
"Intel 801B8", /* Code 4 */
"Intel 80186", /* Code 5 */
"Intel B0286", /* Code 6 */
"Intel 80386" /* Code 7 *1

I;

printf("\nPROCC (cl 1988 by Michael Tischer\n\n");

printf("This PC contains a(nl 's processor\n",

procname[qetproc() 1);

Assembler listing: PROCCA.ASM

:****•••***:
:* PROCCA *;

:*--*;
;* Task Make a function available to a C proqram which *;
;* examines the type of processor installed in a *;
;* PC and informs the calling program of this *;
;* information. *;
;*--*;
;* Author MICHAEL TISCHER * ;
;* Developed on : 08/15/1988 * ;
;* Last update : 05124/1989 *;
;*--*:
; * assembly : MASH PROCCA; *;
; * • •• link to a C program * ;
,-*************************************.********************************­,

IGROUP group _text ;Include program segment
DGROUP group const,_bss, data ;Include data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

BSS segment word public 'BSS' ;This segment inoludes al un-initial ­
BSS ends 	 ;ized static variables

_DATA segment word public 'DATA' 	 ;This segment includes all initialized
;gobal and static variables

DATA ends

;z:_ Constants =========__==__====--===--===-==__==-=_-===-==

p_B0386 equ 	 ;Codes for different processor tpyes
p 80286 equ 6

p:::80186 equ 5

p_B01BB equ 4

p_v30 equ 3

p_v20 equ 2

p_BOB6 equ 1

p_B08B equ 0

;== Proqram ========----====~====....,--=""'======,.-====-""'==-======

_TEXT segment byte public 'CODE' 	 ;Program segment

public _getproc 	 ;Function made available for other
; programs

;-- GETPROC: Determines the type of processor in the current PC ------- ­

;-- Call from C int getproc(void);

;-- Output : The processor type~s number (see constants above)

_getproc proc near

pushf ;Secure flag register contents

664

Abacus 15. Determining Processor Types

;-- Test for 80386/80286 ------------------------------------­

xor ax,ax ;Set AX to 0
push ax land push onto stack
popf ;Pop flag register off of stack
pushf ;Push back onto stack
pop ax land pop off of AX
and ax,OfOOOh ;00 not clear the upper 4 bits
cmp ax,OfOOOh ;Are bits 12-15 al equal to 11
je not_a_386 ;YES --> Not an 80386 or 80286

;-- Test for handling as an 80386 or 80286 ------------------­

mov dl,p 80286 ;In any case, this routine checks for
mov ax,07000h lOne of the two processors
push ax ;Push 07000h onto stack
popf ;Pop flag register off
pushf land push back onto the stack
pop ax ;Pop into AX register
and ax,07000h ;Bits 12-14 not included
je pende ;Are bits 12-14 all equal to O?

;YES--> Handle it as an 80286

inc dl ;NO --> Handle it as an 80386
jmp pende ;End test

;-- Test for 80186 or 80188 ---------------------------------­

mov dl,p_80188 ;Load code for 8018B
mov al,Offh ;Set all bits in At register to 1
mov cl,021h ;Hove number of shift operations to CL
shr al,cl ;At CL shift to the right
jne t88_86 ;If At <> 0, handle is as an

;80188 or B0186

;-- Test for NEC V20 or V30 ---------------------------------­

mov dl,p v20 ;Load code for NEC V20
sti - ;Enable interrupts
push si ;Mark contents of SI register
mov si,O ; Starting with first byte in ES, read
mov ex,Offffh ;a complete segment
rep lods byte ptr es:[sij ;REP with a segment override

; (works ony with NEC V20, V30)
pop si ;Pop SI off of stack
or cx.,cx ;Has entire segment been read?
je tBB B6 ;YES--> V20 or V30

;NO --> Must be BOBB or 80B6

;-- Test for BB/86 or V20/V30 -------------------------------­

label near

push cs ;Push CS onto stack
pop es land pop ES off
std ;Increment on string instructions
mov di,offset <Lend
mov al,Ofbh ;Instruction code for "STI"
mov ex, 3 ;Execute string instruction 3 times
cli ;Suppress interrupts
rep stosb
cld ;Increment on string instructions
nop ;Fill queue with dummy instructions
nop
nop

inc dx ;Increment processor code

665

15. Determining Processor Types 	 PC System Programming

nop
'Lend: stl ;Re-enable interrupts

;--­

pende label near ; End testing

popf ;Pop flag register off of stack
xor dh,dh ;set high byte of proc. code to 0
mav ax,dx ;Processor code-return value of funct.
ret ;Back to caller

_getproc endp ;End of procedure

i-- End ---""'------------------­

text 	 ends ;End of program segment
end ;End of assembler source

666

	10 Mhz PIM-TB10 Turbo Mainboard
	eee
	1 - cover
	2 - 1 to 4
	3 - 5 plus first part of 6
	4 - some of 6
	5 - last of 6
	6 - chap 7
	7 - chap 8
	8 - chap 9
	9 - chap 10
	10 - chaps 11 and 12
	11 - chap 13
	12 - chap 14
	13 - chaps 15 16 17
	14 - chaps 18 and 19
	15 - append A B
	16 - append C
	17 - append D
	18 - append E
	19 - last of append
	20 - back cover

