
--- --------- - ---- - - --------
-- ---- Personal Computer
--_.- Hardware Reference

Library

IBM Personal Computer
Professional Graphics
Controller Technical
Reference

6138161
August 15, 1984
© CopyrighllBM Corporation 1984

Contents

Description 1

Programming the Mode Control and Status

High-Function Graphics Programming

Major Components 3

System-Bus Interface 4

Microprocessor Section 6

Video Control Generator Section 8

Emulator Address Control 11

Graphics Emulator 13

Display Memory 15

Look-Up Table and Video Output Section 18

Timing and Control Section 19

Emulator Modes 20

Alphanumeric Mode 20

Graphics Mode 24

Description of Basic Operations 28

High-Function Graphics Mode 29

Alphanumeric Operation 29

Graphics Operation 30

Description of Basic Operations 32

Programming Considerations 33

Emulator Programming Considerations 33

Programming the 6845 CRT Controller 33

Registers 35

Color-Select Register 36

Mode-Select Register 38

Status Register 41

Sequence of Events for Changing Modes 42

Memory Requirements 42

Considerations 43

Coordinate Space 45

Video Generation 56

Display Control 58

Drawing Primitives 63

Text 69

Command Lists 71

Look-Up Table 73

August 15,1984
© Copyright IBM Corporation 1984 iii

Image Processing 74

Read-Back Commands 75

System Reset 77

Communications 78

Communication Protocol 80

High-Function Graphics Commands 83 ~

Interface 179

Connector Specifications 180

Specifications 181

Logic Diagrams 183

Glossary Glossary-l

Index .. Index-l

August 15,1984
© Copyright IBM Corporation 1984 iv

v

vi

Description

The IBM Personal Computer Professional Graphics Controller is
an adapter that: (1) provides a high-function graphics capability

~ 	and (2) acts as an IBM Color/Graphics Monitor Adapter, with
the exception of the 160-by-100 color/graphics mode.

The operations of the Professional Graphics Controller are
controlled by an 8088 Microprocessor. It carries out all
communications through its data bus and address bus. The
system-bus interface recognizes its own commands and passes
only these commands to the controller. The interface allows the
microprocessor to read or write to memory locations, using the
IBM Professional Graphics Controller microprocessor's data and
address busses.

The microprocessor controls and initializes several sections of the
controller. It defines the requirements of the controller's
hardware so the controller can imitate the actions of the IBM
Color / Graphics Monitor Adapter. The microprocessor also

~ 	regulates the emulator address control, which translates the
system's I/O address information and stores the associated data
in the graphics emulator memory for screen display. Finally, it
initializes the video control generator, which generates timing
pulses and the horizontal- and vertical-synchronization (sync)
pulses.

During operation, the microprocessor intercepts commands sent
to the emulator and interprets them. The microprocessor can also
accept and interpret the high-function graphics commands,
writing the results in the display memory for screen display. Both
the emulator and high-function graphics functions have access to
the look-up table (LUT) and output section.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 1

The following is a block diagram of the Professional Graphics
Controller.

Sync

Data Bus

,
'"
~ R!W Control

SystemBu, L-__~'-.,j ~::~.~p
~ Interface Video

V>

Address Bus

Video

f-::==--'====~~ Output~ Section

Timing

and
Address
Control

f-::=~;===:~ ~===~PE~L~B~u~.===J~ Emulator ~
Control Character ROM
Section Row Address

Emulator RAM Address Bus

August 15,1984
2 Professional Graphics Controller <D Copyright IBM Corporation 1984

Major Components

• 	 System-Bus Interface

Bidirectional Buffer

Control Decode Logic

~ 	 Address Decoder
• 	 Microprocessor Section

8088 Microprocessor

Clock Generator Control

Address Latch

Data Latch

Decoders

2K by 8-bit RAM

64K by 8-bit ROM

• 	 Video Control Generator Section
Video Controller
Control Decoder
16- by 8-bit State Length Memory
Synchronization Pulse Generator
State Multiplexer
Vertical and Horizontal State Counters

~ 	 Vertical and Horizontal State Length Counters
Buffer

• 	 Emulator Address Control
Controller
Cursor Generator
Parameter Registers
Character ROM Address Generator
Row Address Generator
Column Address Generator
Microprocessor Address Buffers

• 	 Graphics Emulator

16K by 16-bit Emulator RAM

Shift Registers

Character ROM

Attribute Latch

Emulator PEL Processing

Buffer

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 3

• Display Memory
High-Function Graphics Display Memory

Latch
Tri-State Bidirectional Driver
Tri-State Latch
320K by 8-bit RAM

Display RAM Address Control
High-Function Graphics Scanner

- ROM
- Buffers

• 	 Look-Up Table (LUT) and Video Output Section
Latches
Look-Up Table Memory
Buffer
Triple Digital-to-Analog Converter

• 	 Timing and Control Section
50-MHz Oscillator
High-Function Graphics Display Timing Generator
Control Decoder and Latches

System-Bus Interface

Following is a block diagram of the system-bus interface.

- s/. V sl 	 ...- Bidirectionalk Data Bus IlP Bus

-- Buffer
 "I 	 I

..
:l

III

E
Q)

t; 4/.>
(J) R/W Control "'-	 Decoded Control Lines

7 	 Control

Decode
 U

~ LogIc 5/ ~

~~_BP 	 /
).

20/ ...
Address

IlP Address BusDecoder
20/ /

7 >

August 15,1984
4 Professional Graphics Controller © Copyright IBM Corporation 1984

The system-bus interface allows the system microprocessor to
gain access to the display memory and emulated registers through
the 'data,' 'address,' and 'control' lines. The system-bus interface
can detect the attempt by the system microprocessor to execute a
Memory Write command or an I/O Write command to either the

~ 	emulator memory addresses or the communications memory for
the high-function graphics mode.

When the interface logic detects an assigned address, a 'hold'
signal is sent to the system microprocessor, which suspends the
operation of the controller microprocessor until the proper time.
Although the system microprocessor can gain access to the
memory of the controller microprocessor (through a series of
commands on the bus interface), it cannot directly access the
display RAM, nor can it issue interrupts to the controller
microprocessor. Likewise, the controller microprocessor cannot
gain control of the system bus.

If the system microprocessor writes to a register of the emulated
6845 CRT Controller, the data is stored in the controller's local
RAM.

The controller operates by mapping both the I/O addresses and
the addressed memory into its own memory. It then reads these
locations, interprets the data, and programs the hardware to
imitate the IBM Color/Graphics Monitor Adapter. If
high-function graphics commands are written to the
communication area, the controller microprocessor interprets
those commands and writes to the display memory for screen
display.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 5

Microprocessor Section

Following is a block diagram of the microprocessor section

8088
ilP

Horizontal Test

Vertical Interrupt

August 15,1984
6 Professional Graphics Controller CO Copyright IBM Corporation 1984

The microprocessor section is a standard 8088 Microprocessor
arrangement. A 'timing control' line's input leads into a clock
generator control. The control signal emitted from the clock
generator provides the clock frequency that drives the 8088
Microprocessor. Address and data latches store the signals sent
over the address and data busses. Both the address and data lines
use two 32K by 8-bit ROMs and a single 2K by 8-bit static RAM.
The decoders control chip-select and latch registers.

A single, maskable interrupt occurs from the 'vertical interrupt'
line. The test pin of the microprocessor samples the horizontal
synchronization pulse.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 7

Video Control Generator Section

Following is a block diagram of the video control generator
section.

Control Signals

4

Video
Controller P Data Bus

Done

Done

Timing Control Signals

August 15,1984
8 Professional Graphics Controller @ Copyright IBM Corporation 1984

The video controller monitors and sequences the video control
generator section. The main loop of the control generator
controls the format of the display screen. A display screen is
divided into four states, as shown in the following.

,-..,
I~ 820 PELs ~ I

Vertical Sync

640 PELs

BBHari·
L L

lon- 508A A
tal N 480 N Lines

Active
Sync K Lines K

I IDisplay

N N
G G

States~ 2 I 3 4
I~

The state length memory is a part of the video control generator
section. The contents of the state length memory provide the
data to the state length counters, which then determine how long
each state remains active. For each scan line, the state length
memory loads this data, one at a time, into the horizontal state
length counter. At the end of the count, the counter signals
'done' to the video controller, which then sets the control lines or
particular stages of each state and sends the control information
into the horizontal state counter. The video controller determines
whether to start again at zero for some state, or to increment the
state counter and begin on the next state. The horizontal state
counter counts the number of states across the screen. From the
state counter, the synchronization pulse generator determines the
vertical- or horizontal-synchronization pulse and activates the

~ appropriate line.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 9

This same loop occurs for vertical states. The video controller
monitors the current vertical and horizontal states through the
state counters and synchronization pulse generator.

The controller microprocessor can write directly to the state
length memory to vary the size of each state on the screen. State
lengths remain under program control.

August 15,1984
10 Professional Graphics Controller © Copyright IBM Corporation 1984

Emulator Address Control

Following is a block diagram of the emulator address control.

Timin Control I na 5

Mode

,uP Data BUI

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 11

________________________--J~

For the emulator mode, the address control consists of two
generators-a row address generator and a column address
generator. Both are driven by a controller and produce the
addresses needed for the emulator RAM.

The controller microprocessor can access the address bus to ".-......
program the address generators using an address buffer, and can
program the four parameter registers. The cursor generator
compares the addresses saved in the address generator with those
saved in the parameter registers. If a match is found, the cursor
generator activates the 'cursor' line.

The character ROM address generator produces a character ROM
row address that defines which line to write using a font with 8 by
16 character cells.

August 15,1984
12 Professional Graphics Controller © Copyright IBM Corporation 1984

Graphics Emulator

Following is a block diagram of the graphics emulator.

Control IBM Alpha Video Data
Shift Register

Emulator

RAM
Address

Bu,

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 13

The emulator RAM address bus sends signals to the 16K by
16-bit emulator RAM. The 16-bit-wide RAM allows the
character and its attributes to be read simultaneously. The RAM
shifts this information into a register that also acts as a latch.
During the alphanumeric mode, this information travels through
an attribute latch and the character ROM. The character ROM
checks the shift in the look-up table (LUT) before passing the
information through another shift register.

The attributes determine the foreground and background colors
of the character. The picture element (PEL) processor then shifts
this information out onto the PEL bus.

During the 320-by-200 and 640-by-200 modes, the emulator
RAM shifts out the information 16 bits at a time. The shift
register then shifts out its signals two bits at a time into the PEL
processor. The 640-by-200 mode uses these two bits alternately
as either black or white values. The 320-by-200 mode uses the
same two bits to determine the color placed on the screen.

The system microprocessor can read and write directly into the
emulator RAM space using the CPU address bus.

August 15,1984
14 Professional Graphics Controller © Copyright IBM Corporation 1984

Display Memory

The display memory block consists of the high-function graphics
display memory and the display RAM address control.

High-Function Graphics Display Memory

Following is a block diagram of the high-function graphics display
memory

pP
Data Latch
Bus

Control

8

Display Address Bus

Shift Re ister Bus

The high-function graphics display memory is logically arranged
as an array of 640-by-480 PELs. Each PEL represents one byte
of data. The Professional Graphics Controller provides a variety
of PEL write modes to improve the transfer of data to display
memory.

The high-function graphics display memory consists of five,
32-bit-wide banks (32 bits equal 4 PELs). The controller
microprocessor can write through the latch into the PEL memory.
All information is read from each memory and displayed each

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 15

time the picture is scanned. This process begins when the tri-state
drivers latch four PELs. Each tri-state driver is enabled
individually as the beam crosses the screen. After the fourth PEL
appears on the screen, four new PELs become latched.

In the high-function graphics mode, the high-function graphics
scanner generates addresses for a display access cycle on one of
the five banks every 160 nanoseconds (ns). These cycles are
staggered over an 800-ns period. Of the 32 bits of data latched
from the memory, one PEL is released onto the shift register
every 40 ns. The address selection generator, a field
programmable logic sequencer (FPLS), interleaves
microprocessor access cycles between display cycles, thus
providing the possibility of access every 160 ns. This process
achieves a display-memory access capacity of 32 bits every 80 ns.

During a microprocessor write operation, even in multi-PEL write
modes, all data from the microprocessor is latched, so the
microprocessor receives a 'ready' instantly. The FPLS cycles to
the correct locations, or to all locations, depending on the mode,
while the microprocessor prepares for the next access.

Another important aspect of the display memory is low power
consumption. The staggered access technique reduces the RAM
cycle time to as low as 400 ns, even with both the microprocessor
and display at full capacity. When the display operates alone, the
cycle time increases to 800 ns, minimizing RAM power
consumption.

./

August 15,1984
16 Professional Graphics Controller © Copyright IBM Corporation 1984

Display RAM Address Control

Following is a block diagram of the display RAM address control.

8
Display Address Bus

High-Function
3

Control 	 Graphics Buffers

Scanner

r;::===~> Control
8

ROM

16

IlP Address Bus

In the high-function graphics mode, the high-function graphics
scanner operates as an address generator. The scanner output
selects data from each of the five 32-bit-wide banks (for a total of
20 PELs written). The controller microprocessor expects
memory to appear in a continuous manner; that is, 640 PELs
across. The address-translator ROM is an address map of 640
adjacent memory locations. This provides the display format,
thus leaving the controller microprocessor out of the conversion
process.

Because this address system operates on 20-PEL boundaries, the
memory for each line maps into an adjacent space of 640
locations for microprocessor access. Otherwise, if the
microprocessor did the work, the very high writing speeds would
be reduced_

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 17

Look-Up Table and Video Output Section

Following is a block diagram of the look-up table and video
output section.

latch Look·Up
Table 12

256 x 12
8 Memory

Pixel Bus

Red

Latch
Triple Green

DAC Blue

12
8

BufferP Data Bus

Shift registers from the display memory latch onto the PEL bus
leading from the emulator. Both the emulator and high-function
graphics modes use the same PEL bus. The latches provide an
address for data in the look-up table (LUT). The eight lines of
the PEL bus provide up to 256 colors, while the 256- by 12-bit
LUT in memory provides a selection from a palette of 4096
colors. The LUT generates the color sent as output. The 12 LUT
output lines (4 bits each for red, green, and blue) are the inputs to
a triple digital-to-analog converter (DAC), which converts the
signal to red, green, and blue (RGB) intensities. The controller
microprocessor can write to and read from the LUT.

August 15,1984
18 Professional Graphics Controller © Copyright IBM Corporation 1984

Timing and Control Section

Following is a block diagram of the timing and control section .

..

System Control Signals

....

I
50 MHz -Osc

High-Function
Graphics
Display
Timing

s/

I

...
:> Control

....

Generator Control

s/
Control

I
'J

/oIP Control 3L

s;.
/oIP Address Bus :>

Decoder
and
latches

I

/oIP Data tlus ~..

The high-function graphics-display timing generator, which is
driven by a 50-MHz oscillator, sends control signals for memory
and for the latch control from the display memory. It signals the
controller microprocessor when it is ready to receive or send data
from display memory. Except for system control signals, the
signals from the timing generator are latched and decoded. The
controller microprocessor maintains some control of the latches
and decoder. The timing generator also generates clock signals to
synchronize the board functions.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 19

Emulator Modes

To provide compatibility with the Color/Graphics Monitor
Adapter protocols, the Professional Graphics Controller emulates
the Color/Graphics Monitor Adapter in the alphanumeric and
graphics modes. ~

Note: If a Color/Graphics Adapter is already present in the
system unit, the emulator section of the Professional
Graphics Controller is disabled with the enable/disable
jumper.

Alphanumeric Mode

Every display-character position in the alphanumeric mode is
defined by two bytes in the regen buffer, not the system memory.
Both the Professional Graphics Controller and the
Color/Graphics Monitor Adapter use the following 2-byte
character or attribute format.

Attribute B e

The attribute byte definitions are:

7 6 5 4 3 2 1 0

r B1 R G B111 R G B1

Foreground ColorI I~
Foreground Intensity

Background Color

Foreground Blinking

August 15,1984
20 Professional Graphics Controller © Copyright IBM Corporation \984

The following table provides a summary of available colors.

I R G B Color

0 0 0 0 Black

0 0 0 1 Blue

0 0 1 0 Green

0 0 1 1 Cyan

0 1 0 0 Red

0 1 0 1 Magenta

0 1 1 0 Brown

0 1 1 1 White

1 0 0 0 Gra'l'

1 0 0 1 Light Blue

1 0 1 0 Light Green

1 0 1 1 Light Cyan

1 1 0 0 Light Red

1 1 0 1 Light Magenta

1 1 1 0 Yellow

1 1 1 1 White (High Intensit'l')

In the alphanumeric mode, the display mode can be operated in
either a 40-by-25 mode or a 80-by-25 mode.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 21

40-by-25 Alphanumeric Mode

The 40-by-25 alphanumeric mode:

• 	 Displays up to 25 rows of 40 characters each

• 	 Has a ROM character generator that contains dot patterns
for a maximum of 256 different characters

• 	 Requires 2000 bytes of read/write memory (on the
controller)

• 	 Has a 16-high by 8-wide character box

• 	 Has one character attribute for each character

August 15,1984
22 Professional Graphics Controller © Copyright IBM Corporation 1984

80-by-25 Alphanumeric Mode

The 80-by-25 alphanumeric mode:

• 	 Supports the IBM Professional Graphics Display

• 	 Displays up to 25 rows of 80 characters each

• 	 Has a ROM character generator that contains dot patterns
for a maximum of 256 different characters

• 	 Requires 4000 bytes of read/write memory (on the
controller)

• 	 Has a 16-high by 8-wide character box

• 	 Has one character attribute for each character

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 23

Graphics Mode

The Professional Graphics Controller has two modes available
with the graphics mode-the 320-by-200 color/graphics mode
and 640-by-200 black-and-white graphics mode. Both are
supported in ROM. The following table summarizes the two
modes.

Modes Number of Colors Available
(Includes Background Color)

320 x 200 	 4 Colors Total
1 of 16 for Background and
1 of Green, Red, or Brown or
1 of Cyan, Magenta, or White

640 x 200 	 Black-and-white only

320-by-200 Color/Graphics Mode

The 320-by-200 color/graphics mode supports the Color Display.
It has the following features:

• 	 Contains a maximum of 200 rows of 320 picture elements
(PELs), with each PEL being 2.4-high by I-wide

• 	 Preselects one of four colors for each PEL

• 	 Requires 16,000 bytes of read/write memory (on the
controller)

• 	 Uses memory-mapped graphics

August 15,1984
24 Professional Graphics ControUer © Copyright IBM Corporation 1984

• Formats four PELs for each byte as follows:

7 6 5 4 3 2 1 0

C1 CO C1 CO C1 CO C1 CO

First Second Third Fourth

Display Display Display Display

PEL PEL PEL PEL

• Organizes graphics storage in two banks of 8000 bytes, using
the following format:

Memory
Address
(in hex)

Function

B9F3F
Even Scans (0,1,4,5,8,9...198)

8,000 bytes

B8000
Not Used

BAOOO
Odd Scans (2,3,6,7,10,11 ...199)

8,000 bytes

BBF3F
Not Used

BBFFF

Address hex B8000 contains PEL information for the
upper-left corner of the display.

August 15,1984
© Copyright IBM Corporation 19S4 Professional Graphics Controller 25

• Determines color selection by the following logic:

Cl co Function

0 0 Dot takes on the color of 1 of 16 preselected
background colors

0 1 Selects first color of preselected Color Set 1 or
Color Set 2

1 0 Selects second color of preslelcted Color Set 1
or Color Set 2

1 1 Selects third color of preselected Color Set 1 or
Color Set 2

C1 and CO select 4 to 16 preselected colors. This color selection
(palette) is pre loaded in an 110 port.

The two color sets are:

Color Set 1 Color Set 2

Color 1 is green Color 1 is cyan

Color 2 is red Color 2 is maQenta

Color 3 is brown Color 3 is white

August 15,1984
26 Professional Graphics Controller © Copyright IBM Corporation 1984

640-by-200 Black-and-White Graphics Mode

The 640-by-200 black-and-white graphics mode supports color
monitors. This mode:

~. Contains a maximum of 200 rows of 640 PELs, with each
PEL being I-high by I-wide.

• 	 Supports black-and-white mode only.

• 	 Requires 16,000 bytes of read/write memory (on the
controller).

• 	 Uses the same addressing and mapping procedures as the
320-by-200 color/graphics mode, but the data format is
different. In this mode, each bit in memory is mapped to a
PEL on the screen.

• 	 Formats eight PELs per byte as follows:

17161514131211101
.~.

First Display PEL I J
Second Display PE L

Third Display PEL

Fourth Display PEL

Fifth Display PEL

Sixth Display PE L

Seventh Display PEL

Eighth Display PE L

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 27

Description of Basic Operations

In the alphanumeric mode, the controller fetches character and
attribute information from its display buffer. The starting address
of the display buffer is programmable through the 8088
Microprocessor, but it must be an even address. The character
codes and attributes are then displayed according to their relative
positions in the buffer as shown in the following.

Memory

Address
(in hext Display Buffer

88000

(Even) Character Code A
Starting

88001Address
Attribute A

(Example of a 40 by 25 Screent
88002

ABCharacter Code B

88003

Attribute 8

B87CE X

Character Code X V ideo Screen

Last 887CF
Address Attribute X

The processor and display control unit have equal access to the
display buffer during all operating modes except the 640-by-200
alphanumeric mode. During this mode, the processor should have
access to the display buffer during the vertical retrace time. If it
does not, the display will be affected with random patterns as the
processor is using the display buffer. In the alphanumeric mode,
the characters are displayed from a prestored ROM character
generator that contains the dot patterns of all the displayable
characters.

In the graphics mode, the displayed dots and colors (up to 16K
bytes) are also fetched from the display buffer.

August 15,1984
28 Professional Graphics ControUer © Copyright IBM Corporation 1984

High-Function Graphics Mode

The Professional Graphics Controller provides high function
graphics capability for the PC by processing simple command
strings into bit-mapped images in the controller. The Professional

,-...., 	Graphics Controller provides both alphanumeric and graphic
capabilities.

Alphanumeric Operation

The alphanumeric operation:

• 	 Contains a built-in character font with character enlargement
capabilities.

• 	 Uses a smoothing function for enlarged characters.

• 	 Permits characters to be drawn in a foreground color with a
transparent background; therefore, whatever is behind the
character remains there.

• 	 Contains programmable character fonts accessible through
the high-function graphics command set.

Note: The programmable character sets cannot be
enlarged.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 29

Graphics Operation

The high-function graphics mode supports the Professional
Graphics Display. It has the following features:

• 	 Contains 480 rows of 640 PELs; the PELs are spaced the
same distance vertically and horizontally providing the
standard 4:3 screen aspect ratio.

• 	 The color of each PEL is selected from a set of 256 colors,
which are selected from a palette of 4096 colors.

• 	 Requires 307,200 bytes of read/write memory (on the
controller) .

Note: This memory is addressable only through the
high-function graphics commands and does not occupy
system address space.

• 	 Uses memory-mapped graphics.

• 	 Formats one PEL for each byte.

• 	 Organizes a communications area consisting of a bank of
1000 bytes.

August 15,1984
30 Professional Graphics Controller © Copyright IBM Corporation 1984

• Color selection is determined by the following logic:

The display RAM supplies an 8-bit byte that is used as an
address to the LUT. This 8-bit address selects one of 256
12-bit words from the LUT. This data provides the color
information for each PEL to be sent to the screen. The
12-bit word is divided into three groups of 4-bits: 4 red, 4
green, and 4 blue, as shown in the following table.

4 Bits I 4 Bits I 4 Bits

Red I Green I Blue

1 PEL

1 Byte

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 31

Description of Basic Operations

The controller microprocessor interprets high-function graphics
commands and translates them into data that is stored in the
display memory. The display memory is then scanned 60 times
each second. Each byte is then sent to the LUT. Whatever data
is in memory is used as an address to the LUT data to determine
what is sent to the screen.

August 15, 1984
32 Professional Graphics Controller © Copyright IBM Corporation 1984

Programming Considerations

The Professional Graphics Controller provides the operation of
two individual adapters: (1) the Color/Graphics Monitor
Adapter and (2) the High-Function Graphics Adapter. The
emulation operation and the high-function graphics operation may
be individually programmed. High-function graphics commands
determine which of the two operations ~ppears on the screen.

Emulator Programming Considerations

The Professional Graphics Controller emulates the 6845 CRT
Controller of the Color/Graphics Monitor Adapter.

Programming the 6845 CRT Controller

The CRT Controller has 19 accessible internal registers, which
are used to define and control a raster-scan CRT display. One of
these registers, the index register, is actually used as a pointer to
the other 18 registers. It is a write-only register, and is loaded
from the processor by executing an Out instruction to I/O
address hex 3D4. The five least-significant bits of the I/O bus
are loaded into the index register.

To load any of the other 18 registers, the index register is first
loaded with the necessary pointer; then the data register is loaded
with the information to be placed in the selected register. The
data register is loaded from the processor by an Out instruction to
I/O address hex 3D5.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 33

The following table defines the values that must be loaded into
the 6845 CRT Controller registers to control the different modes
of operation supported by the controller.

Address Register Register Units I/O 40 by 25 80 by 25 Graphic
Register Number Type Alpha- Alpha- Modes

numeric numeric

4 R4 Vertical Total Character Write 1F 1F 1F
Row Only

5 R5 Vertical Total Scan Line Write 06 06 06
Adjust Only

6 R6 Vertical Character Write 19 19 19
Displayed Row Only

7 R7 Vertical Sync Character Write lC lC lC
Position Row Only

A Rl0 Cursor Start Scan Line Write 06 06 06
Only

B Rl1 Cursor End Scan Line Write 07 07 07
Only

C R12 Start - Write 00 00 00
Address(H) Only

D R13 Start - Write 00 00 00
Address(L) Only

E R14 Cursor - Read/ XX XX XX
Address(H) Write

F R15 Cursor - Read/ XX XX XX
Address(L) Write

Note: All register values are in hexadecimal

August 15, 1984
34 Professional Graphics ControUer © Copyright IBM Corporation 1984

Programming the Mode Control and Status Registers

The following shows the I/O registers of the Professional
Graphics Controller.

Function of Register Hex A9 AS A7 A6 A5 A4 A3 A2 Al AO
Address

Mode Control Register 308 1 1 1 1 0 1 1 0 0 0
(00)

Color Select Register 309 1 1 1 1 0 1 1 0 0 1

(00)

Status Register (01) 30A 1 1 1 1 0 1 1 0 1 0

6845 Index Register 304 1 1 1 1 0 1 0 1 0 0

6845 Oata Register 305 1 1 1 1 0 1 0 1 0 1

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 35

Color-Select Register

This is a 6-bit, output-only register (cannot be read). Its I/O
address is hex 3D9, and it can be written to by using the 8088
Microprocessor's I/O Out command. Following is a description
of the bits of the color-select register.

Bit 0 Selects B (blue) background color in 320 x 200 graphics mode
Selects B (blue) foreground color in 640 x 200 graphics mode

Bit 1 Selects G (green) background color in 320 x 200 graphics mode
Selects G (green) foreground color in 640 x 200 graphics mode

Bit 2 Selects R (red) background color in 320 x 200 graphics mode
Selects R (red) foreground color in 640 x 200 graphics mode

Bit 3 Selects I (intensified) background color in 320 x 200 graphics mode
Selects I (intensified) foreground color in 640 x 200 graphics mode

Bit 4 Selects alternate, intensified set of colors in graphics mode

Bit 5
Bit 6

Selects active color set in graphics mode
Not used

Bit 7 Not used

Bits 0, 1, 2, 3 	 Select the foreground color in the 640-by-200
color / graphics mode, and the background color
(CO or C 1) in the 320 by 200 color/graphics
mode.

Bit 4 	 When set, selects an alternate, intensified set of
colors.

Bit 5 	 Used in the 320 by 200 color/graphics mode to
select the active set of screen colors for the
display.

August 15, 1984
36 Professional Graphics ControUer © Copyright IBM Corporation 1984

When bit 5 is set to 0, colors are determined as follows:

C1 co Colors Selected

0 0 Background (Defined by
bits 0-3 of port hex 309)

0 1 Green

1 0 Red

1 1 Brown

When bit 5 is set to 1, colors are determined as follows:

C1 co Colors Selected

0 0 Background (Defined by
bits 0-3 of port hex 309)

0 1 Cyan

1 0 Magenta

1 1 White

When bit 5 is set to °and bit 2 of the mode-select register is set
to 1, colors are determined as follows:

C1 co Colors Selected

0 0 Backqround

0 1 Cyan

1 0 Red

1 1 White

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 37

Mode-Select Register

This is a 6-bit, output-only register (cannot be read). Its I/O
address is hex 3D8, and it can be written to using the 8088
Microprocessor's I/O Out command.

The following table is a description of the register's functions
when the bit values are set to 1.

Bit 0 80 x 25 alphanumeric mode
Bit 1 Graphics select
Bit 2 Black/white select
Bit 3 Enable video signal
Bit 4 640 x 200 black/white mode
Bit 5 Change background intensity to blink bit
Bit 6 Not used
Bit 7 Not used

Bit 0 	 A 1 selects 80-by-25 alphanumeric mode.
A a selects 40-by-25 alphanumeric mode.

Bit 1 	 A 1 selects graphics mode.
A a selects alphanumeric mode.

August 15, 1984
38 Professional Graphics Controller © Copyright IBM Corporation 1984

Bit 2· A 1 selects black-and-white mode.
A 0 selects color mode.

Bit 3 A 1 enables the video signal at certain times when
modes are being changed. The video signal should be
disabled when changing modes.

Bit 4 A 1 selects the 640-by-200 mode black-and-white
graphics mode. One of 8 colors can be selected on
direct-drive sets in this mode by using register hex 3D9.

Bit 5 When on (set to 1), this bit changes the character
background intensity to the blinking attribute function
for alphanumeric modes. When the high-order attribute
bit is not selected, 16 background colors (or intensified
colors) are available. For normal operation, this bit
should be set to 1 to allow the blinking function.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 39

Mode-Select Register Summary

The following table shows the mode-select registers.

Bits

0 1 2 3 4 5

0 0 1 1 0 1 40 x 25 Alphanumeric Black-and-White

0 0 0 1 0 1 40 x 25 Alphanumeric Color

1 0 1 1 0 1 80 x 25 Alphanumeric Black-and-White

1 0 0 1 0 1 80 x 25 Alphanumeric Color

0 1 1 1 0 z 320 x 200 Black-and-White Graphics

0 1 0 1 0 z 320 x 200 Color Graphics

0 1 1 1 1 z 640 x 200 Black-and-White Graphics

II I : Eo,,,, Bli 0' "nib""
640 x 200 Black-and-White

Enable Video Signal

L-______.. Select Black-and-White Mode

L-_______~ Select 320 x 200 Graphics

L-________..... 80 x 25 Alphanumeric Select

z = Don't care condition

August 15, 1984
40 Professional Graphics Controller © Copyright IBM Corporation 1984

Status Register

The status register is a 4-bit, read-only register. Its I/O address is
hex 3DA, and it can be read using the 8088 Microprocessor's I/O
In command. The following table is a description of the register

~ functions.

Bit 0 Display Enable
Bit 1 Reserved
Bit 2 Reserved
Bit 3 Vertical Sync
Bit 4 Not Used
Bit 5 Not Used
Bit 6 Not Used
Bit 7 Not Used

Bit 0 	 When set to 1, indicates that access to the regen buffer
memory can be made without interfering with the display.

Bit 3 	 When set to 1, indicates that the raster is in a vertical
retrace mode. This is a good time to update the screen
buffer.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 41

Sequence of Events for Changing Modes

1. 	 Determine the mode of operation.

2. 	 Reset the video enable bit in the mode-select register.

3. 	 Program the CRT Controller to select the mode.

4. 	 Program the mode- and color-select registers, including
re-enabling video.

Memory Requirements

The memory used by this controller is provided entirely on-board.
It consists of 16K bytes without parity. This memory is used as
both a display buffer for alphanumeric data and as a bit map for
graphics data. The regen buffer's address starts at hex B8000.
The following table shows the memory requirements.

Read/Write Memory Address
Space (in hexl

01000
System
Read/Write
Memory

AOOOO

B8000
Display Buffer
(16K Bytesl

BBFFF

COOOO

August 15, 1984
42 Professional Graphics Controller © Copyright IBM Corporation 1984

High-Function Graphics Programming
Considerations

The high-function graphics command set uses a wide range of
two-dimensional and three-dimensional programs that include:

• 	 Drawing primitives with points, vectors, and polygons in two
and three dimensions

• 	 Coordinate transformations with modeling (scaling, rotation,
translation) and viewing transformations

• 	 Drawing primitives with rectangles, circles, ellipses, arcs, and
sectors in two dimensions

• 	 Stored segments that define and execute command lists

• 	 Color control functions

• 	 Text generation

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 43

Following is a flowchart of the two- and three-dimensional
commands.

3D
Commands

2D
Commands

44 Professional Graphics Controller

Modeling
Transformation
(4-by-4 Matrix)

Viewing
Transformation
(4-by-4 Matrix)

Hither/Yon
Clipping

3D to 2D
Transformation

Window Clipping
and Viewport
Transformation

~

Standard 2D
Draw Routines

August 15, 1984
(0 Copyright IBM Corporation 19H4

Objects may be defined in three dimensions using the
three-dimensional drawing commands. A modeling matrix allows
the object to be moved (translated), changed in size (scaled), and
rotated. A viewing matrix allows the object to be viewed from
different directions and distances.

Two clipping planes are defined at right angles to the
line-of-sight. Any part of an object beyond the yon clipping plane
and any part of an object in front of the hither clipping plane are
not seen.

Three-dimensional objects are projected onto a two-dimensional
viewplane, which is the plane of the monitor's screen.
Two-dimensional objects are defined directly on the viewplane.
Coordinates on the viewplane are referred to as virtual
coordinates. A window defines that area of the viewplane that is
visible. Any part of an object outside the defined window is not
seen. A viewport specifies a rectangular area on the monitor's
screen that completely contains the defined window.

Coordinate Space

Two-dimensional commands operate on a virtual coordinate space
whose x and y boundaries range from -32768.00000 bits to
+32767.99999 bits, with 16 bits of precision to the right of the
decimal point. The display screen, however, is 640 PELs wide by
480 high. Therefore, commands are available to specify how
coordinates are converted from virtual values to screen values. In
addition, portions of the physical screen may be declared "off
limits" to drawing. This is accomplished through the command
VWPORT, which defines a rectangular clipping viewport.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 45

The following figure shows the relationship of two-dimensional
virtual coordinate space to real coordinate space.

Virtual Coordinate Space (2D) Real Coordinate Space
+32767.99999 Bits J-- 640 Bits --I0 1Transformation

480Process
~

y

ISx-32768.00000 Bits +32767.99999
(0,0)

Bits (0,0)

-32768.00000 Bits

Three-dimensional drawing commands operate in a virtual
coordinate space whose x and y boundaries range from
-32768.00000 bits to +32767.99999 bits, but a z coordinate is
added, which may have any value in the same range as x and y.
All three-dimensional drawing may be divided into a series of
points and lines; these points and lines are what are mapped onto
the two-dimensional plane for actual writing to the display. ~

The following figure shows the relationship of three-dimensional
virtual coordinate space to real coordinate space,

Virtual Coordinate Space (3D) Real Coordinate Space

-32768.00000 Bits +32767.99999 Bits J....--640 Bits~

, ;;~:!:~rmationDT
"" y • 480 Bits1

-32768.00000 Bitst------'..."k--x--.... +32767.99999
Bits (0,0,0)

+32767.99999 Bits
-32768.00000 Bits

August 15, 1984
46 Professional Graphics Controller © Copyright IBM Corporation 1984

Coordinate Transformations

The high-function graphics mode refers to four coordinate
systems when converting three-dimensional virtual coordinates to
a screen image. The two-dimensional commands MOVE and

~ DRAW undergo a single transformation.

Two-Dimensional Transformation

The lowest level of transformation occurs following the
two-dimensional command MOVE or DRAW. These commands
use parameters given in two-dimensional virtual coordinates. The
high-function graphics mode converts these points to screen
coordinates. To understand this conversion, keep in mind that the
window in two-dimensional virtual space maps onto the viewport
of the screen.

The WINDOW command defines an area (window) in
two-dimensional virtual space to be mapped into a defined
viewport with x and y virtual coordinate values, as follows:

y
Window

~
Yw2

x w l,Ywl xw2

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 47

x

The x and y values may range from -32768.00000 to
+32767.99999. The VWPORT command defines an area
(viewport) within the display screen with x and y screen
coordinate values, as shown in the following.

Viewport
I

Yv2 +. . .

xv1,Yv1 xv2

x

0,0

The x values range from 0 to 639, and the y values from 0 to 479. ~

The two-dimensional command uses virtual coordinates; that is,

X2dvir and Y2dvir. The high-function graphics mode converts

these to screen coordinates, Xscrn and Yscrn, using the following

equations.

(Xv2 - XvI)

Xscrn (X2dvir - XwI) x ----------------- + XvI

(Xw2 - XwI)

(Yv2 - YvI)

Yscrn = (Y2dvir - Ywl) x ----------------- + YvI

(Yw2 - Ywl)

The X2dvir, Y2dvir are two-dimensional virtual coordinates. The
variables Xwl, Xw2, Ywl, and Yw2 are window coordinates, and ,,-.....
XvI, Xv2, Yvl, and Yv2 are viewport coordinates.

August 15, 1984
48 Professional Graphics Controller © Copyright IBM Corporation 1984

Three-Dimensional Transformation

Three-dimensional transformations involve converting
three-dimensional points to two dimensions. This process uses
the following matrix operation for the conversion; that is

~ 	three-dimensional world coordinates to three-dimensional viewing
coordinates:

[Xview, Yview, Zview, 1] =
[Xvi.rtual, Yvirtual, Zvirtual, 1] x [M] x [VRP] x [V]

[M] represents the modeling matrix, [VRP] represents the view
reference point matrix, and [V] denotes the viewing matrix. The
three-dimensional viewing coordinates can be read back using the
command FLAGRD 24. The last value of the viewing matrix
remains 1 only if the last columns of all matrixes entered in this
formula have the following form.

x x x 0
x x x 0
x x x 0
x x X 1

Otherwise, the result will have the form:

[Xview, Yview, Zview, Q]

To reduce this result to the form required, simply divide the X, Y,
and Z values by the value Q. This operation gives a 1 as the final
column value of the matrix, and proper values for the other three
parameters.

~ The Modeling Matrix

The modeling matrix, [M], rotates, translates, and scales the
coordinate values of an object defined in three-dimensional

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 49

virtual coordinates. Rotation about any axis uses the right-hand
rule. To understand this principle, refer to the coordinate space
depicted below (the positive z direction comes out of the page).

y

x

z

To rotate in a positive direction around the y axis, the positive z
axis rotates toward the positive x axis. To rotate in a positive
direction around the x axis, the positive y axis rotates toward the
positive z axis. To rotate in a positive direction around the z axis,
the positive x axis rotates toward the positive y axis.

Keep in mind that the order of rotation changes the viewing faces
of the object. That is, an object rotated along the x axis, then the
y axis, gives a different perspective than if the same object is
rotated first along the y axis, then the x axis.

August 15, 1984
50 Professional Graphics ControUer © Copyright IBM Corporation 1984

The following illustration depicts various viewing perspectives.

Original

MDROTX 90 '" then ... MDROTY 90

MDROTY 90 ... then ... MDROTX 90

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 51

Rotation involves the matrix operation,

[M(new)] [M(old)] x [M(rst)]

[M(rst)] represents the rotation, scaling, or translation matrix.

For rotation, this matrix differs with each axis chosen as the axis

of rotation. For each direction of rotation, the algorithm refers to

the appropriate matrix as follows:

1 0 0 0
0 cose sine 0

Rx((;l} =
0 -sinO cosO 0
0 0 0

cosO 0 -sinO 0
0 1 0 0

Ry(O)
sinO 0 cosO 0

0 0 0

case sine 0 0
-sine cose 0 0

Rz(e) =
0 0 1 0
0 0 0 1

The scaling operation uses the following matrix.

Xs 0 0 0
o ys 0 0s o 0 Zs 0
000

August 15, 1984
52 Professional Graphics Controller © Copyright IBM Corporation 1984

The translation operation uses the following matrix.

000
000

T
001 0
Xt Yt Zt

Viewer Reference-Point Matrix

The viewer reference-point matrix, [VRP], translates the point
viewed by the user to the center of the currently defined window.
Because the window coordinates map onto the viewport
coordinates, this matrix also places the user-viewed point at the
center of the viewport.

The viewing matrix, [V], affects the degree of rotation of the
object by moving the eye about the object, while keeping the
object stationary. Like the modeling matrix, the viewing matrix
uses the right-hand rule for rotation of the eye about the viewing

~ reference point.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 53

Three-Dimensional Hither and Yon Clipping

Besides two-dimensional viewport clipping, the high-function
graphics mode also clips in the third dimension. The hither and
yon clipping designate two x-y planes along the z axis beyond
which no drawing takes place.

.

+y

• _Yon Plane
-z

. . . .
-x _-------JL...------. +x

+z

_ Hither Plane

-y . . .

August 15, 1984
54 Professional Graphics Controller © Copyright IBM Corporation 1984

Three-Dimensional Viewing to Two-Dimensional Virtual
Projection

Using the DISTAN command, the user specifies the distance from
the eye to the viewplane. The command PROJCT provides a

""	viewing angle with a value ranging from 1 to 179 degrees. The
high-function graphics mode projects the viewing coordinate into
a two-dimensional coordinate value using the following formulas.

DISTAN WINDOW DIAGONAL
X2dvir ------------ x Xview x ------------------------

DISTAN - Z 2 x DISTAN x tan(PROJCT)

2

DISTAN WINDOW DIAGONAL
Y2dvir ------------ x Yview x ------------------------

DISTAN - Z 2 x DISTAN x tan(PROJCT)

2

Placing the object closer magnifies the X and Y values.
Increasing the viewing angle increases the amount of picture
visible in the viewing field.

If the PROJCT angle is 0, the projection is orthographic parallel
(non-oblique), The high-function graphics mode projects the
viewing coordinate into a two-dimensional coordinate value using
the following formulas:

X2dvir Xview

Y2dvir Yview

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 55

Video Generation

A total of 256 colors may be displayed on the screen at one time.
A total of 4096 possible color selections is available to the LUTs.
The video generation process begins when the video scanner reads
the value of the PEL about to be displayed. The PEL value ~
consists of eight bits and is used as an address to the LUT. The
PEL value selects one of 256 12-bit entries in the table. The
three 4-bit output values from the LUT represent the red, green,
and blue intensities required to compose the target PEL. Because
the table outputs are 4 bits each for the three colors, the 256
simultaneous colors may be chosen from a 4096-color palette.
The LUTINT command sets the entire look-up table from one of
several predefined LUT selections. The LUT command loads
individual LUT entries, and LUTRD reads them back.

Each bit of each PEL resides in one of eight bit planes in the
display memory. The bit planes are masked for reading and
writing. These bit planes are shown in the following.

Bit Plane 7

Bit Plane 0

480
Bits

~

-
~-

'-
'-

'- 1
~_______ 	640 ________~

Bits

August 15, 1984.
56 Professional Graphics Controller CD Copyright IBM Corporation 1984

Current Point

The current point is the x-y-z coordinate point at which the last
command finished. Many high-function graphics commands use a
current point in carrying out their functions. Two current points

~	 are maintained; one is used by two-dimensional commands, the
other by three-dimensional commands. For example, the
two-dimensional command CIRCLE draws a circle centered on
the two-dimensional current point; the three-dimensional
command DRAW3 draws a vector that starts at the
three-dimensional current point. The current points are moved
whenever move and draw commands are executed. When
referred to in the command descriptions, the applicable current
point will be identified, unless it is clear from the context of the
command.

The command CONVRT will change a three-dimensional current
point to a two-dimensional virtual coordinate. This conversion
allows the user to overdraw a three-dimensional drawing with
two-dimensional commands, such as text.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 57

Current Color

The current color is the last color a COLOR command defines for
general drawing. Drawing is possible in two modes-the
complement drawing mode and the replace drawing mode. In the
complement drawing mode, the PEL bit value in display RAM is ".-.....,
complemented from its current value. In the replace drawing
mode, the PEL bit value in display RAM is changed to a specified
value. The value comes from the current color, which is set by
using the COLOR command.

Note: In both cases, the actual value written into a PEL may
be affected by a mask.

Display Control

Display control commands set or reset flags or define commonly
used parameters. All these commands affect the way that later
commands draw to the screen.

Drawing Modes

The high-function graphics mode provides several drawing modes.
It has its own language. The Professional Graphics Controller
also imitates two current graphics modes resident in the existing
PC graphics systems. The Professional Graphics Controller will
accept and execute all commands sent to either mode. To view
the current status of commands sent to a particular mode, use the
DISPLA command, indicating the appropriate mode as the
parameter. This command simply switches between the
high-function graphics screen and the emulator screen. All
previous drawing sent to either screen remains intact during these
switches, because Draw commands are independent of the
viewing status; that is, high-function graphics commands affect
the high-function graphics screen even while the emulator screen
is displayed.

August 15,1984
58 Professional Graphics Controller © Copyright IBM Corporation 1984

Primitive Fills and Drawing Patterns

The command PRMFIL sets an onloff flag to fill the commands
that draw defined geometric shapes and create an enclosed area.
Each command description will note the effects of any flags.

~

The user can change the drawing pattern by using Pattern
commands. The command LINPAT governs any vector or other
command drawing a geometric shape (with PRMFIL off). the
parameter, a 16-bit number, acts as a mask during drawing. Each
bit sets an onloff pattern for a corresp6nding PEL on the screen.
This pattern repeats every 16 PELs. A 1 in any bit position
draws a PEL, while a 0 changes nothing. The value 65535

produces a solid line.

Similarly, the command AREAPT establishes a drawing pattern
for an area using a 16-bit by 16-bit format. This command
repeats in blocks of 16-by-16 PELs, duplicating the pattern in
both a horizontal and vertical direction. To define a pattern,
enter sixteen 16-bit words, visualizing their orientation on a grid.
For example:

Word Pattern Bit
Order Number

F XXXX XXXX XXX X 62415

E XXXX XXXX XXX 31207

D XXXX XXXX XX 15603

C X XXX X XXX X X 40569

B XX XXXX XXXX 53057

A XXX XXX X XXX X 59294

9 XXX X XXX X XXXX 62415

8 XXXX XXXX XXX 31207

7 XXXX XXX X XX 15603

6 X XXXX XXXX X 40569

5 XX XXXX XXXX 53057

4 XXX XXX X XXXX 59294

3 XXXX XXXX XXXX 62415

2 XXX X XXXX XXX 31207

1 XXXX XXXX XX 15603

0 X XXX X XXXX X 40569

FEDCBA9876543210

August 15,1984

© Copyright IBM Corporation 1984 Professional Graphics ControUer 59

Each word, then, would equal the decimal equivalent of the 16-bit
number. For this example, use 40569 for word 0, 15603 for word
1, and so on. In hexadecimal mode, these same words should read
9E79 for word 0, 3CF3 for word 1, and so on.

Masks

Masks act as an overlay to either reveal or overwrite the bits of a
PEL. In reference to bit planes, the mask can effectively separate
planes and protect certain ones. Masks affect only read and write
operations but do not affect the displayed PELs.

Bit Planes

The number of bits used to define the colors of a graphics system
also defines the number of bit planes. Masks control the CPU
reads and writes. By using LUT entries, the user can designate
which bits will actually draw to the screen. This capability
effectively produces backgrounds. For example, if a mask hides
the first four bits of all color values, the system draws colors using
only the last four bits. Colors defined using the first four bits can ~
be protected by suitably setting the LUTs. Switching among
more than one LUT can produce animation.

The following mask writes only PELs whose color-values
(indexes) are given as xOH, where x can equal °to F.

o ~ 8-Bit Mask Value

'----.... Masked Bits

'--------~ Written Bit

Color values such as 19H and B4H will write as lxH and BxH
respectively, where x leaves any previous draw untouched.

August 15, 1984
60 Professional Graphics Controller © Copyright IBM Corporation 1984

Area Pattern Mask

The command FILMSK affects the two Area Fill commands. The
8-bit value of FILMSK is ANDed with the value of MASK and
with each PEL value read in an Area Fill command. The
high-function graphics mode then compares the ANDed value to
the boundary color.

Clipping

The high-function graphics mode describes a clipping window and
a set of clipping planes. Both the VWPORT and WINDOW
command define a clipping border, for the screen and
two-dimensional virtual space, respectively. The clipping window
can change to include more or less of the image in
two-dimensional virtual space. The viewport clipping window
defines the area on the screen that is to contain the image.
Redefining the coordinates of the viewport allows several clipped
images to appear on the screen simultaneously.

In three-dimension, the high-function graphics mode adds hither
~ 	and yon clipping capabilities. The previously defined clipping

window projects forward and backward to define a clipping space.
The high-function graphics mode calculates all intersecting
clipping planes.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 61

Viewing

Viewing involves selecting a viewing distance with the command
DISTAN and a viewing angle with the command PROJCT.

WAIT

The command WAIT causes the system to pause for a specified
number of frame scan cycles. An imbedded Wait command will
hold the drawn image on the screen for a specified amount of time
before continuing with the program. The Wait command bases its
timing on frame time, which equals 1/60 of a second. Use this
value to calculate the actual wait period. For example, specifying
300 frame times would give a wait period of 5 seconds.

August 15, 1984
62 Professional Graphics ControUer © Copyright IBM Corporation 1984

Drawing Primitives

The term drawing primitives defines a group of commands that
draw defined geometric shapes. The user specifies size and

,............ position with the parameters associated with each command.

Two-Dimensional and Three-Dimensional Command Format

Two-dimensional commands use no numbers within the 6-letter
command. All three-dimensional commands end in the numeral
3. Coordinates for two-dimensional commands require one
variable each-for the x and y values; the three-dimensional
commands require three coordinate values (one each for the x, y,
and z direction). Not all two-dimensional Draw commands have
a three-dimensional counterpart.

Move Commands

The Move commands change the current point in either the
two-dimensional or three-dimensional coordinate space, one
current point for each space. The commands MOVE and
MOVE3 specify a change using absolute coordinate values.
These commands use the virtual coordinate systems. MOVER
and MOVER3 change the current point by a relative amount,
adding the parameter values to the current point to produce a new
coordinate value as the current point.

Point

The Point command changes the PEL at the current point to the
current color.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 63

Vectors

Draw commands produce vectors (directed line segments)

between two specified points. The current-point value supplies

the first coordinate. The high-function graphics mode then draws ~

a vector ending at the absolute coordinate values given in a

DRAW or DRAW3 command or at the relative distance specified

by the parameters of a DRAWR or a DRAWR3 commands.

After a vector command, the current point shifts to the location

of the last PEL drawn. The following examples show vectors.

Parameter Point Parameter Point
(x,V) (xO+dx,VO+dV)

(xO,VO) (xO,VO)
Current Point Current Point

August 15, 1984
64 Professional Graphics Controller © Copyright IBM Corporation 1984

Linear Forms

The high-function graphics mode produces two closed linear
forms: rectangles and polygons. Two points define a rectangle.
The current point is one corner of the shape. The parameters,
given in absolute values (RECT) or in a relative, offset distance
(RECTR), specify the opposite corner. The current point does
not change for any rectangle command. Rectangles are specified
only in two dimensions. The following example shows rectangles:

Parameter Point Parameter Point

(x,Y) (xO+dx, yO+dy)

\ \
(xO,yO)

Current Point \ (xO,yO)

Current Point \
Rectangle Rectangle Relative

Each pair of coordinates in a Polygon command declares a vertex
of any multisided figure. Two pairs of coordinate values, adjacent
within a command's variable string, produce a side between them.
The command effectively draws multiple vectors, changing the
current point to the location of the last PEL drawn. This pattern
continues until a vector has been drawn to the last coordinate.
The final draw of the command connects the final coordinates
given to the beginning point of the polygon. The current point
returns to its original value. Again this command uses either
absolute or relative coordinates-POLY or POLYR for
two-dimensional, and POLY3 or POLYR3 for three-dimensional.
All relative coordinates are expressed relative to the original
point. Keep in mind that nonplanar values in three-dimensional
polygons may produce undesired effects.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 65

The following is an example of a polygon.

(x4,y4)

Final Point

in Parameter List

Final

Draw •

(xO,yO) (xl,yl)

Note: The primitive fill flag in PRMFIL 1 directs the
high-function graphics mode to draw any of the above
rectangles or polygons as a solid (that is, all enclosed PELs
are set to the current color). Undesirable effects may occur .~
if the filled polygon intersects itself.

Nonlinear Forms

The high-function graphics mode also produces some nonlinear
geometric shapes. The commands CIRCLE and ELIPSE require
only radius values (both an x and y radius value for ELIPSE).
The current point specifies the center of both of these figures.
The parameters for the command ARC list a radius, a beginning
angle value, and an ending angle value. The current point also
serves as the center point of rotation for this command. The
command SECTOR has the same parameter requirements as an
ARC command, but produces a pie-shaped figure. That is, the
end-points of the arc connect with vectors to the center point of
rotation.

Except when used with the ARC command, a PRMFIL command
with the fill flag set on, will instruct the commands to produce
solid shapes filled with PELs of the current color. All nonlinear
commands draw only in two dimensions.

August 15, 1984
66 Professional Graphics Controller © Copyright IBM Corporation 1984

The following illustrations show examples of nonlinear forms.

ARC

"
Current Point

Current Point

ARC deg 0 deg 1 example CI RCLE radius example

Current Point

ELiPSE x radius y radius example

SECTOR deg 0 deg 1 example

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 67

,,'---

Area Fills

The Area Fill commands employ a seed point. Before sending an
Area Fill command, place the current point within the area to be
filled. The current color must differ from the color being
changed. The command AREA changes PELs outward in all
directions from the current (seed) point until is encountered a
color different from either the one being changed or the current
color. The command AREABC allows the user to specify a color
to act as a boundary. This command converts PELs from the
seed point outward until PELs of the same color as the specified
boundary color are encountered. The current color must differ
from the boundary color. The following is an Area Fill example.

Seed Point

Color 4

Color 1 Color 2 	 Boundary

Color 3

In the Area Fill example, set the current color to color 4. The
Area Fill will fill only the area covered by color 1. The Area
Boundary Fill specified with the boundary color set to color 3 will
fill the area covered by color 1 and color 2.

August 15, 1984
68 Professional Graphics Controller © Copyright IBM Corporation 1984

--~-'

Text

Various Text commands help in placing and moving text. The
two-dimensional current point acts as a placement marker. For
justifying text, this point defines the horizontal and vertical

~ 	placement of the text string, using the command TJUST (see the
following). The default is H = 1, V = 1.

H = 1 H=2 	 H=3

r---, --- V=3

L...-_________________T_ex_t_S_tr_in_9________________----l1 =~:~

Altering the angle adjusts the slope of the centering point for each
letter but not the rotation of the letter itself. The command
TANGLE uses standard Cartesian coordinates to measure the
angle, as shown in the following.

deg 0

To adjust the text size, use the command TSIZE. The parameter
of this command specifies a two-dimensional virtual x-distance.
Keep in mind that the high-function graphics mode sizes letters
using the mapping of the window onto the viewport. For

~ 	example, a window of 320 PELs by 240 PELs mapped to a
viewport of 640 PELs by 480 PELs would draw size 8 letters in a
16-PEL horizontal space. All text that exceeds the viewport

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 69

boundary undergoes clipping. The default, size 8, writes a
character of 7 by 9 PELs in a cell of 8 by 12 PELs using one
column for horizontal spacing between letters (see the following).

~I·~-----x------_~~I

Use the commands TEXT or TEXTD to write text to the screen.
TEXT uses a default text font; TEXTD uses any text defined in
the command TDEFIN. This command requires a size
specification followed by a bit value to describe each line of
blocks. The first step is to outline an area that encompasses the
character (see the following).

Line Number 5 _ X X X X X
Line Number 4 _ X X X X
Line Number 3 _ X X
Line Number 2 _ X X X X
Line Number 1 _ X X

7 6 5 4 3 2 1 o ___ Bit Number

Then list each bit; start with the bottom, leftmost block and work
to the right and up. The command for this character becomes:

TDEFIN 'x' 85
0 0 1 0 000 1
1 1 1 0 000 1
0 0 1 0 000 1
1 1 1 0 000 1
0 0 1 1 1 1 1 0

August 15, 1984
70 Professional Graphics ControUer © Copyright IBM Corporation 1984

Command Lists

Command lists consist of a series of valid high-function graphics
commands executed by a single command. The commands
CLBEG and CLEND mark the beginning and end of command
lists. Two commands begin execution of command lists. CLRUN
executes a single command list once; CLOOP executes a single
command list a specified number of times. The commands
CLDEL and CLBEG delete a command list previously defined by
the specified parameter value. Space permitting, the user can
define up to 256 command lists. Any command, except CLBEG,
may appear within a command list definition. However, during
the execution of a command list, the high-function graphics mode
will not execute an imbedded CLDEL.

The following examples show valid formats for command lists.

CLBEG 8 CLBEG 17
CLEARS 0 CLEARS 0
MOVE 0 0 PRMFIL 1
PRMFIL 1 MOVER 10 0
COLOR 2 COLOR 2
SECTOR 100 60 359 CIRCLE 5
MOVE 10 10 CLEND
COLOR 3 CLOOP 17 5
SECTOR 90 0 59
CLEND

CLRUN 8

Command list 8 will draw two sectors of different colors.
Command list 17 will draw a small circle of radius 5. The
command CLOOP repeats command list 17 five times, thus
drawing five, small, tangential circles.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 71

The following example shows an invalid format for a command
list.

CLBEG 23
CLEARS 0
CLBEG 1

CIRCLE 25
CLEND 2
CLDEL 14
CLEND

Command list 23 is invalid because:

• CLBEG cannot appear within a stream of command list
commands.

• If the high-function graphics mode receives CLRUN 23, the
execution of CLDEL command would produce an error.

August 15, 1984
72 Professional Graphics Controller © Copyright IBM Corporation 1984

Look-Up Table

The look-up table (LUT) contains the red, green, and blue
intensity information associated with each color. A value, or
index, identifies each color. The high-function graphics mode

"" 	provides several default LUT selections, which are accessible with
the command LUTINT. The user can change values by using the
command LUT or by initializing a new table. The command
LUTSAV stores the current LUT values. LUTSAV overwrites
any previously saved LUT values. The saved values may be
selected by the command LUTINT 255. The following block
diagram illustrates LUT generation.

States ..,
0 I LUTINT 0 	 LUT CommandI 	

!
I

I 1 I LUTINT 1

· · -=> · I 	 "'-.,

I
 5 	 ,/"
I LUTINT 5 I LUT

"I ,/

L I
"-

v ~
255 	 I LUTINT 255I 	 I

/~
LUTSAV Command

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 73

Image Processing

The high-function graphics mode uses limited image-processing
techniques. The user can read or write a line of PEL data with
variable endpoints. The user specifies a line number and a
beginning and ending point within that line. The Image Read
command (IMAGER) returns the line data formatted as an Image
Write command (IMAGEW). This format makes it easier to use
stored image information. The following illustrates image
processing.

,----------------,_ Line 479

PELs -4-- Monitor Screen

I
•••••••••••••••••••••• ~I---- Specified Line
, I

Xl x2

t
PEL 0

August 15, 1984
74 Professional Graphics ControUer © Copyright IBM Corporation 1984

Read-Back Commands

The high-function graphics mode allows the user to read various
parameters from the color board back to the program. Items
readable in this way include LUT entries, both three-dimensional
transformation matrixes, and the line pattern and line function
flags. The read-back protocol is straightforward. When the
high-function graphics mode executes one of the read-back
commands (for example, FLAGRD), it puts the value of the
requested item in the output buffer. In ASCII mode, the value is
written as a decimal number followed by a carriage-return
character. A high-level language, such as BASIC, need only
execute an Input statement to get the data from the color board.
Some data read-back commands return more than one value. The
individual commands describe the format of the return in both
ASCII and hexadecimal communication modes.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 75

The following table lists the flags readable by FLAGRD, and the
size and type of the value returned.

Flag

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Name

AREAPT

CLiPH

CLiPY

COLOR

DISPLA

DISTAN

DISTH

DISTY

FILMSK

LlNFUN

LlNPAT

MASK

MDORG

2D current point

3D current ~oint

PRMFIL

PROJCT

TANGLE

TJUST

TSIZE

VWPORT

VWRPT

WINDOW

Transformed 3D

current point

Free memory

available

Type of Value

Returned

16 integers

1 integer (byte)

1 integer (byte)

1 integer (byte)

1 integer (byte)

1 real number

1 real number

1 real number

1 inteQer (byte)

1 inteQer (byte)

1 integer

1 integer (byte)

3 real numbers

2 real numbers

3 real numbers

1 integer (byte)

1 i ntege r (byte)

1 word

2 integers

(bytes)

1 real number

4 integers

3 real numbers

4 real numbers

3 real numbers

1 integer

The command LUTRD reads back the red, green, and blue
intensity levels for a particular LUT index. To read back either
the viewing matrix [V] specified in the command VWMATX, or
the modeling matrix [M] specified in the command MDMATX,
use the command MATXRD. This command returns a string of
16 values. These values of the 4-by-4 matrix begin at the
upper-left corner and read across the rows.

August 15,1984
76 Professional Graphics Controller CD Copyright IBM Corporation 191>4

System Reset

The command RESETF resets all flags. The following table lists
the default values of all flags that can be reset.

Flag Name Default Value

1 AREAPT 65535 16 times Solid area

2 CLiPH Flaq = 0 Disabled

3 CLiPY Flag = 0 Disabled

4 COLOR Value = 255

5 DISPLA No change after a RESETF

6 DISTAN Distance = 500

7 DISTH Distance = -30000

8 DISTY Distance = 30000

9 FILMSK Mask = 255 No PEL draw
effect

10 LlNFUN Function = 0 Replacement
mode

11 LlNPAT Pattern = 65535 Solid line

12 MASK Mask = 255 All planes
enabled

13 MDORG OX = OY = OZ =0

14 2D current point X=Y=O

15 3D current point X=Y=Z=O

16 PRMFIL Flac = 0 Primitive fill off

17 PROJCT Angle = 60

18 TANGLE Angle = 0 Horizontal,
left-richt text

19 TJUST H=V=1 Left, bottom
justification

20 TSIZE Size = 8 12 by 8 cell
characters

21 VWPORT 0,639,0,479 Entire screen

22 VWRPT X=Y=Z=O

23 WINDOW -320,319, -240, 239

24 Transformed 3D X=Y=Z=O
current point

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 77

Communications

The Professional Graphics Controller accepts high-function
graphics commands in either ASCII or hexadecimal format. In
ASCII mode, English-like commands and their parameters are
sent to the board as ASCII character strings. This allows easy ~
transmission of instructions from such high-level languages as
BASIC. For example, to draw a circle of radius 55.05 centered at
the screen center, execute a BASIC statement to transmit the
following character string:

MOVE 0,0 CIRCLE 55.05

In hexadecimal communication mode, the commands are sent as a
stream of bytes for greatest throughput. The statement above
could be sent in hexadecimal mode as

10 00 00 00 00 00 00 00 00 38 37 00 CD DC

to realize substantial time savings.

ASCII Communications

ASCII mode commands are sent in a format designed to
accommodate the restriction of a high-level language. The ASCII
command consists of a command word (no more than six letters
in length) and parameters, if applicable. Every command word
has a short form, which is always three characters or less in
length. Parameters may be either decimal numbers or text strings
enclosed in quotes.

Commands and parameters in a command line are separated by
delimiters. A delimiter is one or more of the following, except
when enclosed by quotation marks:

• Space
• Tab
• Comma
• Semicolon
• Hyphen
• Plus sign

August 15, 1984
78 Professional Graphics Controller © Copyright IBM Corporation 1984

Commands and parameters consist of letters, numbers, and
decimal points. Any other character, except when enclosed in
quotes, is illegal and will be ignored.

When a hyphen immediately precedes a numeric parameter, that
~ number is interpreted as negative.

Examples of Legal Commands:

lOCI 5" Draw a circle of radius 5.

"RECT 67-88" Draw a rectangle.

"COLOR 2 FLOOD 3" Change the current color to 2,

and flood the screen to the color 3.
"LUTRD 3" Read LUT entry 3.

Examples of Illegal Commands:

"CIR 5" CIR is not a valid abbreviation.
"RECT%67,-68" "%" is not a legal character.
"COLOR 2 4 FLOOD 3" COLOR takes only one parameter.
"LUTRD 3.4" The parameter to the LUTRD command

is an integer.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 79

Communication Protocol

The high-function graphics data is sent and received as a
sequential stream of bytes. To realize maximum throughput
between the system and the Professional Graphics Controller, a
first-in-first-out (FIFO) buffer protocol has been set up. This 1""""'\
protocol must be adhered to for proper transmission and
reception. These buffers, and their associated pointers and flags,
are directly addressable when the system uses addresses in the
hexadecimal range C6000 to C63FF.

There are three channels through which data may pass to and
from the controller. From the system's point of view, these
channels are 'output' (for sending commands and parameters),
'input' (for receiving data read-back commands), and 'error' (for
receiving high-function graphics-generated error and warning
codes). Each channel has a FIFO buffer associated with it and
each buffer has 256 bytes reserved in the lK-byte communication
area. A portion of the remaining 256 bytes is reserved for three
sets of buffer pointers-one pair for each channel-as well as the
warm and cold restart and diagnostic flags. The following
memory map shows the addresses as seen by the system. 1""""'\

Memory Function
Address
(in hex)

C6000 Output FIFO (256 bytes)

C6100 Input FIFO (256 bytes)

C6200 Error FIFO (256 bytes)

C6300 Output FIFO Write Pointer

C6301 Output FIFO Read Pointer

C6302 Input FIFO Write Pointer -
C6303 Input FIFO Read Pointer

C6304 Error FIFO Write Pointer

C6305 Error FIFO Read Pointer

C6306 Cold Restart Flaq

C6307 Warm Restart Flaq

C6308 Error Enable Flag

August 15, 1984
80 Professional Graphics Controller © Copyright IBM Corporation 1984

Each buffer has a one-byte read pointer and a one-byte write
pointer, which refer to buffer locations relative to the base of the
buffer in question. The read pointer always points to the next
byte to be read; the write pointer always points to the next byte
to be written. The buffer is empty when the read pointer is equal
to the write pointer, because the byte that would be read has not
yet been written. Alternately, the buffer is full when the write
pointer is one less than the read pointer.

A FIFO write must be done as follows:

1. 	 Ensure the buffer has room by comparing the write
pointer to the read pointer. If the read pointer is only
one greater than the write pointer, there is no room, and
no writing may take place until there is room.

2. 	 Write one byte to the address specified by that buffer's
base address plus the value in its write pointer.

3. 	 Increment the write pointer, modulo-255.

More than one byte may be written if the buffer's write pointer is
~ increased by the same number as the number of bytes written.

A FIFO read must be done as follows:

1. 	 Ensure the buffer has data by comparing the write
pointer to the read pointer. If the read pointer is equal
to the write pointer, the buffer is empty, and no reading
may take place until there is data to be read.

2. 	 Read one byte from the address specified by that
buffer's base address plus the value in its read pointer.

3. 	 Increment the read pointer, modulo-255.

More than one byte may be read if the buffer's read pointer is
increased by the same number as the number of bytes read.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 81

Error Handling

The high-function graphics mode provides an error-reporting

capability. If the host sets the error-enable flag in the

communication area, the high-function graphics mode returns

errors in the error buffer. In ASCII mode, the error is returned as ~

a message, such as "Arithmetic Overflow." In hexadecimal mode,

the error is returned as a single byte code.

August 15, 1984
82 Professional Graphics Controller © Copyright IBM Corporation 1984

High-Function Graphics Commands
The high-function graphics commands can be logically grouped
into the following categories:

~ • Two-Dimensional Drawing
ARC (AR) Arc
CIRCLE (CI) Circle
DRAW (D) Draw
DRAWR (DR) Draw Relative
ELIPSE (EL) Ellipse
MOVE (M) Move
MOVER (MR) Move Relative
POINT (PT) Point
POLY (P) Polygon
POLYR (PR) Polygon Relative
RECT (R) Rectangle
RECTR (RR) Rectangle Relative
SECTOR (S) Sector

• 	 Three-Dimensional Drawing
DRAW3 (D3) Draw in 3D
DRAWR3 (DR3) Draw Relative in 3D
MOVE3 (M3) Move in 3D
MOVER3 (MR3) Move Relative in 3D
POINT3 (PT3) Point in 3D
POLY3 (P3) Polygon in 3D
POLYR3 (PR3) Polygon Relative in 3D

• 	 Modeling Transformations
MATXRD (MRD) Matrix Read
MDIDEN (MDI) Modeling Identity
MDMATX (MDM) Modeling Matrix
MDORG (MDO) Modeling Origin
MDROTX (MDX) Modeling Rotate X Axis
MDROTY (MDY) Modeling Rotate Y Axis
MDROTZ (MDZ) Modeling Rotate Z Axis
MDSCAL (MDS) Modeling Scale
MDTRAN (MDT) Modeling Translation

• Viewport/Window/Projection
~ 	 CLIPH (CH) Clip Hither

CLIPY (CY) Clip Yon
CONVRT (CV) Convert
DISTAN (DS) Distance
DISTH (DH) Distance Hither

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 83

DISTY (DY) Distance Yon
PROJCT (PRO) Projection
VWIDEN (VWI) Viewing Identity
VWMATX (VWM) Viewing Matrix
VWPORT (VWP) Viewport
VWROTX (VWX) Viewing Rotate X Axis
VWROTY (VWY) Viewing Rotate Y Axis
VWROTZ (VWZ) Viewing Rotate Z Axis
VWRPT (VWR) Viewing Reference Point
WINDOW (WI) Window

• 	 Command List
CLBEG (CB) Command List Begin
CLDEL (CD) Command List Delete
CLEND (CE) Command List End
CLOOP (CL) Command List Loop
CLRD (CRD) Command List Read
CLRUN (CR) Command List Run

• 	 Mode Set/Read
CA (CA) Communications ASCII
CX (CX) Communications Hexadecimal
DISPLA (DI) Display
FLAGRD (FRD) Flag Read
RESETF (RF) Reset Flags
WAIT (W) Wait

• 	 Color/Fills/Patterns
AREA (A) Area Fill
AREABC (AB) Area Fill to Boundary Color
AREAPT (AP) Area Pattern
CLEARS (CLS) Clear Screen
COLOR (C) Color
FLOOD (F) Flood
FILMSK (FM) Fill Mask
LINFUN (LF) Line Function
LINPAT (LP) Line Pattern
MASK (MK) Mask
PRMFIL (PF) Primitive Fill

• 	 Image Transmission
IMAGER OR) Image Read
IMAGEW OW) Image Write

August 15, 1984
84 Professional Graphics Controller © Copyright IBM Corporation 1984

• Look-Up Table Operations
LUT (L) Look-Up Table
LUTINT (LI) Look-Up Table Initialize
LUTRD (LRD) Look-Up Table Read
LUTSAV (LS) Look-Up Table Save

• 	 Text
TANGLE (TA) Text Angle
TDEFIN (TD) Text Define
TEXT (T) Text
TEXTP (TP) Text Programmed
TJUST (TJ) Text Justify
TSIZE (TS) Text Size

The high-function graphics commands appear on the following
pages in alphabetic order.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 85

ARC (Arc)

Purpose: Draw an arc in two dimensions.

Command: ARC radius degO degl

Description: ARC draws the arc of a circle in the current color.
The center is at the current point. The radius is
specified in the attribute radius, starting at the
angle given in degO and ending at the angle given
in deg1. The angles are expressed in degrees and
are measured counterclockwise from a ray that is
parallel to the X axis, starting at the origin and
going toward increasing X values. Radius values
are real numbers and may range from -8191 to
8191. Start and end angles are treated as
modulo-360. If radius is negative, 180 degrees are
added to both angles.

Short Form: AR radius de gO deg1

Hex Format: 3C lowradius
lowfracradius
10wdegO
lowdegl

highradius
highfracradius
highdegO
highdeg1

Example:

ASCII: AR 50.25 45 135

HEX: 3C 32 00 00 40 2D 00 87 00

Errors: Radius too large

August 15, 1984
86 Professional Graphics Controller © Copyright IBM Corporation 1984

AREA (Area Fill)

Purpose: Random area fill.

,...-..., Command: AREA

Description: AREA sets all PELs in a given closed region to the
current color. The region extends from the
two-dimensional current point outward in all
directions until reaching a boundary of PELs
whose colors differ from the original color of the
PEL at the current point and the current color.
The region to be filled must be continuous. All
data read is ANDed against the fill mask and the
mask to compare colors. The original color should
not be equal to the current color.

Short Form: A

Hex Format: CO

,...-..., Example:

ASCII: A

HEX: CO

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 87

AREABC (Area Fill to Boundary Color)

Purpose: Random area fill to the boundary color.

Command: AREABC bcolor

Description: AREABC sets all PELs in a given closed region to
the current color under mask. The region extends
from the two-dimensional current point outward
until reaching a boundary of PELs with the color
specified by bcolor. Bcolor must be different from
the current color. All data read is ANDed against
the fill mask and the mask for boundary
comparison.

Short form: AB bcolor

Hex Format: C 1 bcolor

Example:

ASCII: AB 4

HEX: Cl 04

Errors: Boundary = current color

August 15, 1984
88 Professional Graphics Controller © Copyright IBM Corporation 1984

AREAPT (Area Pattern)

Purpose: Define an area pattern mask.

Command: AREAPT pattern

Description: AREAPT defines the area pattern mask. The 16
pattern mask words define a 16-by-16 PEL array
to be repeated horizontally and vertically when
drawing filled figures. Setting all bits in the mask
(sending 16 words of 65535) causes areas to be
filled solidly; this is the default after a reset.

Short Form: AP pattern

Hex Format: E7 10wpO highpO lowp 1 highp 1
lowp2 highp2 lowp3 highp3
lowp4 highp4 lowp5 highp5
lowp6 highp6 lowp7 highp7
lowp8 highp8 lowp9 highp9
10wplO highplO lowpll highpll

lowp12 highp12 10wp13 highp13
lowp14 highp14 lowp15 highp15

Example:

ASCII: AP 52428 52428 13107 13107
52428 52428 13107 13107
52428 52428 13107 13107
52428 52428 13107 13107

HEX: E7 CC
CC
CC
CC

CC
CC
CC
CC

CC
CC
CC
CC

CC
CC
CC
CC

33 33 33 33
33 33 33 33
33 33 33 33
33 33 33 33

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 89

CA (Communications ASCII)

Purpose: Set the communication mode to ASCII.

Command: CA

Description: This command may be given in either ASCII or
hexadecimal mode.

Short Form: CA

Hex Format: 43 41 20

Note: This is the hexadecimal equivalent of the three ASCII
characters "CA ".

Example:

ASCII: CA

HEX: 43 41 20

Errors: None

August 15,1984
90 Professional Graphics Controller © Copyright IBM Corporation 19M

CIRCLE 	 (Circle)

Purpose: 	 Draw a circle in two dimensions.

~ Command: CIRCLE radius

Description: 	 CIRCLE draws a circle of a given radius, with its
center at the current point. The circle is drawn in
the current color and is filled if the PRMFIL flag
is set (see "PRMFIL"). Nothing is drawn if the
radius value is outside the range of -8191 to 8191.

Short FQrm: 	 CI radius

Hex Format: 38 	 lowradius highradius
lowfracradius highfracradius

Example:

ASCII: CI 25.5 5 135

HEX: 38 19 	00 00 80

Errors: 	 Radius too large

August IS, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 91

CLBEG (Command List Begin)

Purpose: Begin command-list definition.

Command: CLBEG clist

Description: CLBEG begins the definition of the command list
specified by clist. Commands sent later to the
controller are saved in the command-list definition
area for execution (see "CLRUN" and
"CLOOP"). CLEND ends the command-list
definition. clist may be from 0 to 255. Any
previous definition of the command-list is erased.

Short Form: CB dist

Hex Format: 70 c1ist

Example:

ASCII: CLBEG 1

HEX: 70 01 07 02 06 01 30 00 C8 00 00 71

Errors: Not enough memory; command list running

August 15, 1984
92 Professional Graphics Controller © Copyright IBM Corporation 1984

CLDEL

Purpose:

Command:
"-....,,

Description:

Short Form:

Hex Format:

Example:

~
Error:

(Command List Delete)

Delete the definition of a command list.

CLDEL clist

CLDEL deletes the definition of the command list
specified by clis!. It also reclaims command-list
memory for other definitions. clis! may be from 0
to 255.

CD clist

74 clist

ASCII : CD 3

HEX: 74 03

Command list running

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 93

a tr am-h.·""

CLEARS (Clear Screen)

Purpose: Clear the screen to a given color.

Command: CLEARS color

Description: Sets every PEL in the high-function graphics
display buffer to the color specified by color
regardless of the mask. This command does not
change the current color. It is similar, but not
identical, to the command FLOOD.

Short Form: CLS color

Hex Format: OF color

Example:

ASCII: CLS 23

HEX: OF 17

Errors: None

August 15, 1984
94 Professional Graphics ControUer © Copyright IBM Corporation 1984

CLEND (Command List End)

Purpose: End the definition of a command-list.

Command: CLEND
~

Description: 	 CLEND ends the definition of a command-list.
When the controller receives a CLEND, it resumes
executing commands as they are received.

Short Form: 	 CE

Hex Format: 	 71

Example:

ASCII: CE

HEX: 71

Errors: 	 None ~

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 9S

CLIPH 	 (Clip Hither)

Purpose: 	 Set the hither clip flag.

Command: 	 CLIPH flag

Description: 	 CLIPH enables or disables hither clipping. Hither
clipping is enabled when flag is 1 or any odd
number, and disabled when flag is 0 or any even
number (default). Three-dimensional drawing
commands draw faster when hither clipping is
disabled.

Short Form: 	 CH flag

Hex Format: 	 AA flag

Example:

ASCII: CH 0

HEX: AA 01
 /"-.

Errors: 	 None

August 15, 1984
96 Professional Graphics ControUer © Copyright IBM Corporation 1984

CLIPY 	 (Clip Yon)

Purpose: 	 Set the yon clip flag.

Command: 	 CLIPY flag~

Description: 	 CLIPY enables or disables yon clipping. Yon
clipping is enabled when flag is 1 or any odd
number, and disabled when flag is 0 or any even
number (default). Three-dimensional drawing
commands draw faster when yon clipping is
disabled.

Short Form: 	 CY flag

Hex Format: 	 AB flag

Example:

ASCI I: CY 0

HEX: AB 01

Errors: 	 None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 97

CLOOP (Command List Loop)

Purpose: Repeat execution of a command list.

Command: CLOOP dist count

Description: CLOOP executes the command list specified by
dist, for the number of times specified by count.
dis! may be between 0 and 255; count can be from
.0 to 65535.

Short Form: CL dist count

Hex Format: 73 dist lowcount highcount

Example:

ASCII: CL 1 1000

HEX: 73 01 E8 03

Errors: Command list running; stack full.

August 15, 1984
98 Professional Graphics Controller © Copyright IBM Corporation 1984

CLRD

Purpose:

Command:
.~

Description:

Short Form:

Hex Format:

Example:

~
Errors:

(Command List Read)

Read back command list.

CLRD dist

In hexadecimal mode, a word representing the
number of bytes in the command list is read back
(zero if the list is undefined), followed by the
bytes as they are stored.

CRD dist

75 dist

ASCII: CRD 1

HEX; 75 01

None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 99

CLRUN (Command List Run)

Purpose: Execute command list.

Command: CLRUN dist

Description: CLRUN executes commands in the command list
specified by clist. ciist must be from 0 to 15.

Short Form: CR dist

Hex Format: 72 dist

Example:

ASCII: CR 14

HEX: 72 01

Errors: Command list running; stack full; nested
command list

August 15, 1984
100 Professional Graphics Controller © Copyright IBM Corporation 1984

COLOR (Color)

Purpose: Set the current color.

Command: COLOR value

Description: COLOR sets the current color to that specified by
value. All noncomplement mode drawing is done
in the current color. All drawing, including
complement mode, is subject to MASK and
FILMSK. value is treated as modulo-256.

Short Form: C value

Hex Format: 06 value

Example:

ASCII: C 2

HEX: 06 02
~

Errors: None

August 15, 1984
co Copyright IBM Corporation 1984 Professional Graphics Controller 101

CONVRT (Convert)

Purpose: Convert three dimension to two dimension.

Command: CONVRT

Description: CONVRT converts the three-dimensional current
point to two-dimensional virtual coordinates, using
the current transformation matrixes. The result is
left in the two-dimensional current point.

Short Form: CV

Hex format: AF

Example:

ASCII: CV

HEX: AF

Errors: Arithmetic overflow

August 15, 1984
102 Professional Graphics Controller © Copyright IBM Corporation 1984

CX (Communications Hexadecimal)

Purpose: Set the communication mode to hexadecimal.

Command: CX

Description: This command may be given in either ASCII or
hexadecimal mode.

Short Form: CX

Hex Format: 43 58 20

Note: This is the hexadecimal equivalent of the three ASCII
characters "CA ".

Example:

ASCII: CX

HEX: 43 58 20

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 103

DISPLA (Display)

Purpose: Select the display mode.

Command: DISPLA flag

Description: DISPLA selects a screen for display. If flag is 0,
the color high-function graphics screen is
displayed. If flag is 1, the emulator screen is
shown. Color graphics commands are accepted
and executed, no matter which screen is displayed.

Short Form: D I flag

Hex Format: DO flag

Example:

ASCII: 01 0

HEX: DO 01

Errors: None

August 15,1984
104 Professional Graphics Controller © Copyright IBM Corporation 1984

DISTAN (Distance)

Purpose: Define the distance to the viewing reference point.

Command: DISTAN dist

Description: DISTAN defines the distance (dist) from the eye
to the viewing reference point.

Short Form: DS dist

Hex Format: B 1 lowdist highdist
lowfracdist highfracdist

Example:

ASCII: OS 1200

HEX: B1 BO 04 9A 59

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 105

DISTH (Distance Hither)

Purpose: Define the hither clip plane.

Command: DISTH dist

Description: DISTH defines the distance to the hither clip plane
from the viewing reference point. The hither clip
plane is parallel to the view plane, and the distance
(dist) is relative. When hither clipping is enabled,
no points before the hither clip plane are
displayed. Hither clipping affects only
three-dimensional drawing commands.

Short Form: DH dist

Hex Format: A8 lowdist
lowfracdist

highdist
highfracdist

Examples:

ASCII: DH 15.01

HEX: A8 OF 00 8F 02

Errors: None

August 15, 1984
106 Professional Graphics Controller © Copyright IBM Corporation 1984

DISTY (Distance Yon)

Purpose: Define the yon clip plane.

Command: DISTY dist

Description: DISTY defines the distance to the yon clip plane
from the viewing reference point. The yon clip
plane is parallel to the view plane, and the distance
(dist) is relative. When yon clipping is enabled, no
points beyond the yon clip plane are displayed.
Yon clipping affects only three-dimensional
drawing commands.

Short Form: DY dist

Hex Format: A9 lowdist
lowfracdist

highdist
highfracdist

Example:

ASCII: DY 15.999

HEX: A9 OF 00 BE FF

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 107

DRAW (Draw)

Purpose: Absolute draw in two dimensions.

Command: DRAWxy

Description: DRAW draws a line from the current point to the
point specified by x,y. The current point moves to
the x and y value.

Short Form: D x y

Hex Format: 28 lowx
lowfracx
lowy
lowfracy

highx
highfracx
highy
highfracy

Example:

ASCII: D 23.5 -90.71

HEX: 20 17 00 00 80 A5 FF C3 85

Errors: Arithmetic overflow

August 15,1984
108 Professional Graphics ControUer © Copyright IBM Corporation 1984

DRAWR

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Draw Relative)

Relative draw in two dimensions.

DRAWRdxdy

DRAWR draws a line from the current point to a
point dx,dy from the current point. The current
point moves to the end point of the line.

DR dx dy

29 	 lowdx highdx
lowfracdx highfracdx
lowdy highdy
lowfracdy highfracdy

ASCII: DR 65.8 12.2

HEX: 21 41 00 CD CC DC 00 34 33

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 109

DRAW3 (Draw in 3D)

Purpose: Draw absolute in three dimensions.

Command: DRAW3 xyz

Description: DRAW3 draws a line from the current point to the
point in the three-dimensional space given. After
the draw, the current point moves to x,y,z.

Short Form: D3 x y z

Hex Format: 2A low x
lowfracx
lowy
lowfracy
lowz
lowfracz

highx
highfracx
highy
highfracy
highz
highfracz

Example:

ASCII: D3 943, -266, 100

HEX: 22 AF 03 00 00 F6 FE 00 00 64 00 00 00

Errors: Arithmetic overflow

August 15, 1984
110 Professional Graphics ControUer © Copyright IBM Corporation 1984

DRAWR3 (Draw Relative in 3D)

Purpose: Draw relative in three dimensions.

Command: DRAWR3 dx dy dz

Description: DRAWR3 draws a line to the point offset from the
current point by dx,dy,dz and moves the current
point to this new point.

Short Form: DR3 dx dy dz

Hex Format: 2B lowdx
lowfracdx
lowdy
lowfracdy
lowdz
lowfracdz

highdx
highfracdx
highdy
highfracdy
highdz
highfracdz

Example:

ASCII: DR3 835.02 44.62 98

HEX: 23 43 03 IF 05 2C 00 B8 9E 62 00 00 00

Errors: Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 111

ELIPSE (Ellipse)

Purpose: Draw an ellipse in two dimensions.

Command: ELIPSE xradius yradius

Description: ELIPSE draws an ellipse centered on the
two-dimensional current point whose x and y axis
lengths are given in xradius and yradius. The
ellipse is filled if the PRMFIL flag is set.

Short Form: EL xradius yradius

Hex Format: 39 lowxradius
lowfracxradius
lowyradius
lowfracyradius

highxradius
highfracxradius
highyradius
highfracyradius

Example:

ASCII: EL 50 100

HEX: 39 25 00 00 80 19 00 00 00

Errors: Radius too large

August 15, 1984
112 Professional Graphics Controller © Copyright IBM Corporation 1984

FILMSK 	 (Fill Mask)

Purpose: Set area fill mask.

Command: FILMSK mask

~

Description: 	 FILMSK sets the 8-bit area fill mask to mask. All
PELs read by the Area Fill commands are ANDed
against this mask, and also MASK, before
comparison with the boundary color.

Short Form: FM mask

Hex Format: EF mask

Example:

ASCII: FM 254

HEX: EF FE

.~ Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 113

FLAGRD (Flag Read)

Purpose: Read flag value.

Command: FLAGRD flag

Description: FLAGRD loads the current value of the flag
specified by flag into the output buffer for later
reading by the host. The flag numbers assigned
are as follows.

Flag

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Name

AREAPT

CLiPH

CLiPY

COLOR

DISPLA

DISTAN

DISTH

DISTY

FILMSK

LlNFUN

LlNPAT

MASK

MDORG

2D current point

3D current point

PRMFIL

PROJCT

TANGLE

TJUST

TSIZE

VWPORT

VWRPT

WINDOW

Transformed 3D

current point

Free memory

available

Type of Value

Returned

16 inteQers

1 inteQer (byte)

1 inteQer (byte)

1 inteQer (byte)

1 inteaer (byte)

1 real number

1 real number

1 real number

1 inteQer (byte)

1 inteQer (byte)

1 inteQer

1 inteaer (byte)

3 real numbers

2 real numbers

3 real numbers

1 inteQer (byte)

1 inteQer (byte)

1 word

2 integers

(bytes)

1 real number

4 inteaers

3 real numbers

4 real numbers

3 real numbers

1 integer

August 15, 1984
114 Professional Graphics Controller © Copyright IBM Corporation 1984

Each value is read in the same order as provided to
the command that sets it. For example, the
three-dimensional current point is read as one real
number each for x, y, and z. In ASCII mode,
commas separate multiple return values, with a

~ carriage return at the end.

Short Form: FRD flag

Hex Format: 51 flag

Example:

ASCII: FRD 3

HEX: 51 03

Error: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 115

FLOOD (Flood)

Purpose: Flood the screen to the color given.

Command: FLOOD color

Description: FLOOD sets every PEL in the defined viewport,
to the color specified by color subject to MASK.
This command does not change the current color.

Short Form: F color

Hex Format: 07 color

Example:

ASCII: F 4

HEX: 07 04

Errors: None

August 15, 1984
116 Professional Graphics Controller © Copyright IBM Corporation 1984

IMAGER (Image Read)

Purpose: Read image from the display.

Command: IMAGER line xl x2

Description: IMAGER reads a line from the image being
displayed. If the communication mode is ASCII
(CA) the image is placed in the output buffer as
one ASCII number for each PEL, separated by
carriage returns. If communication is in
hexadecimal mode (CX) the image output is in a
run-length encoded format. line, xl, and x2 are
expressed in PELs measured from the lower-left
corner of the screen.

Short Form: IR line xl x2

Hex Format: D8 lowline
lowx1
lowx2

highline
highx1
highx2

"-', Example:

ASCII: IR 100 a 127

HEX: D8 64 00 00 00 7F 00

Errors: Value out of range

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 117

IMAGEW (Image Write)

Purpose: Write image to the display.

Command: IMAGEW line xl x2

Description: IMAGEW writes a line of PELs to the display. If
communication is in ASCII (CA) each parameter
represents one PEL. If communication is in
hexadecimal (CX) the image is sent in run-length
encoded format. line, xl, and x2 are expressed in
PELs measured from the lower-left corner of the
screen.

Short Form: IW line xl x2

Hex Format: D9 lowline
lowx1
lowx2

highline
highx1
highx2
data

Example:

ASCII: IW 100 50 60

HEX: 09 64 00 32 00 3C 00 82 2C
18 42 03 OC 01 OE 81 18 2C

Errors: Value out of range

August 15,1984
118 Professional Graphics Controller © Copyright IBM Corporation 1984

LINFUN (Line Function)

Purpose: Select drawing function.

Command: LINFUN function

~

Description: LINFUN sets the drawing function to that
specified by function. Available functions are:

0 Draw by writing PELs of the current color
(default).

1 Draw by complementing PEL. The current
color will be ignored.

Note: With both functions, drawing is subject
to MASK and FILMSK where appropriate.

Short Form: LF function

Hex Format: EB function

~

Example:

ASCII : LF 0

HEX: EB 00

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 119

LINPAT (Line Pattern)

Purpose: Set line pattern.

Command: LINPAT pattern

Description: LINPAT sets the line-drawing pattern from a
16-bit number. The line pattern is used to
implement dotted or dashed lines. As each PEL is
generated, the line-pattern mask is rotated right.
If there is a 1 in the least-significant bit (LSB), a
PEL is drawn. If that bit is a 0 then no PEL is
drawn and the background remains visible. A
line-pattern mask of all 1 's (65535) produces solid
lines, and is the default following a RESETF. The
line pattern affects the following commands except
when drawing a filled primitive:

ARC, CIRCLE, DRAW, DRAW3, DRAWR,
DRAWR3, ELIPSE, POLY, POLY3, POLYR,
POLYR3, RECT, RECTR, SECTOR

Short Form: LP pattern

Hex Format: EA lowpattern highpattern

Example:

ASCII: LP 65280

HEX: EA 00 FF

Errors: None

August 15, 1984
120 Professional Graphics Controller © Copyright IBM Corporation 1984

LUT

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

~ Errors:

(Look-Up Table)

Set an entry in the look-up table.

LUT index r g b

LUT loads red, green, and blue intensity levels
into the LUT entry specified by index. Intensity
values are treated as modulo-16 numbers.

L index r g b

EE index r g b

ASC I I: L 3 0 15 0

HEX: EE 04 00 00 OF

None

August 15, 1984
© Copyright IBM Corporation 19S4 Professional Graphics Controller 121

LUTINT (Look-Up Table Initialize)

Purpose: Initialize the look-up table.

Command: LUTINT state

Description: LUTINT sets the LUT to one of the following
states specified by state:

State

0

1

2
3

4

5
255

Color-cone distribution

Foreground/background colors in the low
4-bits of a value code will be visible only if
the hiQh 4-bits is 0 (or "invisible")

Value codes interpreted as: R R G G G B B B

Value codes interpreted as: R R R G G B B B

Value codes interpreted as: R R R G G G B B

6-level RGB

Load LUT from LUT storage area (opposite
of LUTSAV)

Short Form: LI state

Hex Format: EC state

Example:

ASCII: LI 4

HEX: EC 04

Errors: Value out of range

August 15, 1984
122 Professional Graphics Controller © Copyright IBM Corporation 1984

LUTRD (Look-Up Table Read)

Purpose: 	 Read the look-up table entry.

Command: 	 LUTRDindex
~

Description: 	 LUTRD loads the red, green, and blue entries at
the L UT entry specified by index into the output
buffer for reading by the host.

In ASCII mode, the LUT entries are read as red,
green, and blue intensities, separated by commas,
and ended by a carriage return.

In hexadecimal mode, the LUT entries are read
one byte for each entry for a total of three bytes.

Short Form: 	 LRD index

Hex Format: 	 50 index

~ Example:

ASCI I: LRD 2

HEX: 50 02

Errors: 	 None

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 123

LUTSAV (Look-Up Table Save)

Purpose: Save the look-up table in the look-up table storage
area.

Command: LUTSAV

Description: LUTSAV saves all 256 LUT entries in the LUT
storage area. These values may be reloaded with a
"LUTINT 255" command. Each LUTSAV
overwrites any previous LUTSA V.

Short Form: LS

Hex Format: ED

Example:

ASCII: LS

HEX: ED

Errors: None

August 15, 1984
124 Professional Graphics Controller © Copyright IBM Corporation 19~4

MASK (Mask)

Purpose: Set bit-plane mask.

Command: MASK planemask

Description: MASK sets the 8-bit, read/write, bit-plane mask
to the value specified by planemask. A zero in any
position in the mask means that no bits in that
plane are written to; when read, bits in that plane
return zero. Because of the organization of
display memory, the fastest drawing speed occurs
whenplanemask is FF, OF, or FO.

Short Form: MK planemask

Hex Format: E8 planemask

Example:

ASCII: MK 15

HEX: E8 OF

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 125

MATXRD (Matrix Read)

Purpose: Read the matrix contents.

Command: MATXRD matrix

Description: MATXRD reads the contents of the 4-by-4 matrix
specified by matrix into the output buffer for later
reading by the host. The matrix number
assignments are:

1 Three-dimensional modeling transformation
matrix

2 Three-dimensional viewing transformation
matrix

In ASCII mode, the matrix entries are read in four
lines. Each line has four entries separated by
commas.

In hexadecimal mode, four bytes for each matrix
entry are read, for a total of 64 bytes. The reading
order is:

I"""'...

123 4
567 8
9 10 11 12
13 14 15 16

Short Form: MRD matrix

Hex Format: 52 matrix

Example:

ASCI I: MRD 1

HEX: 52 01

Errors: Value out of range

August 15, 1984
126 Professional Graphics Controller © Copyright IBM Corporation 1984

MDIDEN (Modeling Identity)

Purpose: Reset the modeling transformation matrix.

Command: MDIDEN

Description: MDIDEN sets the modeling transformation matrix
to the identity matrix.

Short Form: MDI

Hex Format: 90

Example:

ASCII: MDI

HEX: 90

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 127

MDMATX

Purpose:

Command:

Description:

(Modeling Matrix)

Define the modeling matrix.

MDMATX array

MDMATX loads the modeling matrix directly
from the 4-by-4 real-number array.

Short Form: MDM array

Hex Format: 97 	lowmll highm11 lowfracm11 highfracm11
lowm12 highm12 lowfracm12 highfracm 12
lowm13 highm13 lowfracm13 highfracm13
lowm14 highm14 lowfracm14 highfracm 14
lowm21 highm21 lowfracm21 highfracm21
lowm22 highm22 lowfracm22 highfracm22
lowm23 highm23 lowfracm23 highfracm23
lowm24 highm24 lowfracm24 highfracm24
lowm31 highm31 lowfracm31 highfracm31
lowm32 highm32 lowfracm32 highfracm32
lowm33 highm33 lowfracm33 highfracm33 ~
lowm34 highm34 lowfracm34 highfracm34
lowm41 highm41 lowfracm41 highfracm41
lowm42 highm42 lowfracm42 highfracm42
lowm43 highm43 lowfracm43 highfracm43
lowm44 highm44 lowfracm44 highfracm44

Example:

ASCII: MOM 	 68.25 12.5 253 17
65503 0.25 306.75 34.5
8418 324.75 1.25 0
313.5 50 1. 25 1

HEX: 97 	 44 00 00 40 OC 00 00 80 FO 00 00 00
11 00 00 00 OF FF 00 00 00 00 00 40
32 01 00 CO 22 00 00 80 E2 20 00 00
44 01 00 CO 01 00 00 40 00 00 00 00
39 01 00 80 32 00 00 00 01 00 00 40 ~
01 00 00 00

Errors: Arithmetic overflow

August 15, 1984
128 Professional Graphics Controller © Copyright IBM Corporation 1984

MDORG (Modeling Origin)

Purpose: 	 Define the modeling origin.

Command: 	 MDORG ox oy oz
~

Description: 	 MDORG defines the origin for
modeling-transformation scaling and rotating
specified by oX,oy,OZ.

Short Form: 	 MOO oxoyoz

Hex Format: 91 lowox high ox lowfracox highfracox
lowoy highoy lowfracoy highfracoy
lowoz highoz lowfracoz highfracoz

Example:

ASCI I: MOO 1. 7 0.2 1. 5

HEX: 91 01 	 00 33 B3 00 00 33 33 01 00 00 80

~

Errors: 	 None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 129

MDROTX (Modeling Rotate X Axis)

Purpose: Rotate about the X axis.

Command: MDROTX deg

Description: MDROTX defines the rotation about the x axis
component of the modeling matrix.

Short Form: MDX deg

Hex Format: 93 lowdeg highdeg

Examples:

ASCII: MDX 30

HEX: 93 2D 00

Errors: Arithmetic overflow

August 15, 1984
130 Professional Graphics ControUer © Copyright IBM Corporation 1984

MDROTY (Modeling Rotate Y Axis)

Purpose: Rotate about the Y axis.

Command: MDROTY deg

Description: MDROTY defines the rotation about the y axis
component of the modeling matrix.

Short Form: MDY deg

Hex Format: 94 lowdeg highdeg

Example:

ASCII: MDY 15

HEX: 94 OF 00

Errors: Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 131

MDROTZ (Modeling Rotate Z Axis)

Purpose: Rotate about the Z axis.

Command: MDROTZ deg

Description: MDROTZ defines the rotation about the z axis
component of the modeling matrix.

Short Form: MDZ deg

Hex Format: 95 lowdeg highdeg

Example:

ASCII: MOl 33

HEX: 95 21 00

Errors: Arithmetic overflow

August 15,1984
132 Professional Graphics Controller © Copyright IBM Corporation 1984

MDSCAL (Modeling Scale)

Purpose: Set modeling scaling.

Command: MDSCAL sx sy sf

Description: MDSCAL defines the scaling components for the
image transformation.

Short Form: MDS sx sy sz

Hex Format 92 lowsx highsx lowfracsx highfracsx
lowsy highsy lowfracsy highfracsy
lowsz highsz lowfracsz highfracsz

Example:

ASCII: MDS 2 2 2

HEX: 92 02 00 00 80 01 00 00 00 01 00 00 80

~ Errors: Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 133

MDTRAN (Modeling Translation)

Purpose: Define the modeling translation.

Command: MDTRAN tx ty tz

Description: MDTRAN defines the translation components for
the image transformation specified by tX,tY,tz.

Short Form: MDT tx ty tz

Hex Format: 96 lowtx hightx
lowty highty
lowtz hightz

lowfractx
lowfracty
lowfractz

highfractx
highfracty
highfractz

Example:

ASCII: MDT 50 a a

HEX: 96 32 00 00 00 00 00 00 00 00 00 00 00

Errors: Arithmetic overflow

August 15, 1984
134 Professional Graphics ControUer © Copyright IBM Corporation 1984

MOVE (Move)

,.-.....,

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

,-...."

Errors:

Absolute move in two dimensions.

MOVExy

MOVE moves the two-dimensional current point
to the x and y coordinates given.

Mxy

10 	 lowx highx lowfracx highfracx
lowy highy lowfracy highfracy

ASCI I: M 300 -400

HEX: 10 2C 01 00 00 70 FE 00 00

None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 135

MOVER (Move Relative)

Purpose: Relative move in two dimensions.

Command: MOVER dx dy

Description: MOVER moves the two-dimensional current point
a relative amount specified by dX,dy.

Short Form: MR dx dy

Hex Format: 11 lowdx highdx lowfracdx highfracdx
lowdy highdy lowfracdy highfracdy

Example:

ASCII: MR 20.44 59

HEX: 11 14 00 A2 71 3B 00 00 00

Errors: Arithmetic overflow

August 15, 1984
136 Professional Graphics ControUer © Copyright IBM Corporation 1984

MOVE3

Purpose:

Command:
~

Description:

Short Form:

Hex Format:

Example:

,.-., Errors:

(Move in 3D)

Absolute move in three dimensions.

MOVE3 xyz

MOVE3 moves the three-dimensional current
point to the coordinates specified by x,y,z.

M3xyz

12 lowx highx
lowy highy
lowz highz

lowfracx
lowfracy
lowfracz

highfracx
highfracy
highfracz

ASCII: M3 -1300 -233 519

HEX: 12 EC FA 00 00 17 FF 00 00 07 02 00 00

None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 137

MOVER3 (Move Relative in 3D)

Purpose: Relative move in three dimensions.

Command: MOVER3 dx dy dz

Description: MOVER3 moves the three-dimensional current
point a relative amount specified by dx,dy,dz.

Short Form:

Hex Format:

MR3 dx dy dz

13 lowdx highdx lowfracdx highfracdx
lowdy highdy lowfracdy highfracdy
lowdz highdz lowfracdz highfracdz

Example:

ASCII: MR3 722 0 0

HEX: 13 D2 02 00 00 00 00 00 00 00 00 00 00

Errors: Arithmetic overflow

August 15, 1984
138 Professional Graphics Controller © Copyright IBM Corporation 1984

POINT 	 (Point)

Purpose: 	 Set the PEL to the current color in two
dimensions.

Command: 	 POINT~

Description: POINT writes the current color to the PEL at the
two-dimensional current point.

Short Form: PT

Hex Format: 08

Example:

ASCII : PT

HEX: 08

Errors: 	 None
~

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 139

POINT3 (Point in 3D)

Purpose: Set the PEL to the current color in three
dimensions.

Command: POINT3

Description: POINT3 writes the current color to the PEL at the
current three-dimensional point.

Short Form: PT3

Hex Format: 09

Example:

ASC I I: PT3

HEX: 09

Errors: None

August 15, 1984
140 Professional Graphics ControUer © Copyright IBM Corporation 19S4

POLY 	 (Polygon)

Purpose: 	 Draw a polygon.

Command: 	 POLY npts xl yl x2 y2 xn yn

Description: 	 POLY draws an absolute polygon in two
dimensions, where npts is the number of points,
and x and yare the coordinates of the points. The
polygon is filled if the PRMFIL flag is set. The
current point is not changed.

Short Form: 	 P npts xl yl x2 y2 xn yn

Hex Format: 30 npts lowxl highxl lowfracxl highfracxl
lowyl highyl lowfracyl highfracyl
lowx2 highx2 lowfracx2 highfracx2
lowy2 highy2 lowfracy2 highfracy2
.........

lowxN highxN lowfracxN highfracxN
lowyN highyN lowfracyN highfracyN

~ Example:

ASCII: P 3 0 0 10 10 -10 30

HEX: 30 03 	 00 00 00 00 00 00 00 00
OA 00 00 00 F6 FF 00 00
F6 FF 00 00 E2 FF 00 00

Errors: Not enough memory; arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 141

POLYR (Polygon Relative)

Purpose: Draw a relative polygon.

Command: POLYR npts dxl dyl dx2 dy2 dxn dyn

Description: POLYR draws a relative polygon in two
dimensions, where npts is the number of points,
and dx and dy are the offsets from the current
point. The polygon is filled if the PRMFIL flag is
set. The current point is not changed.

Short Form: PR npts dxl dyl dx2 dy2 dxn dyn

Hex Format: 31 npts lowdxl
lowdyl
lowdx2
lowdy2

highdxl lowfracdxl highfracdxl
highdyl lowfracdyl highfracdyl
highdx2 lowfracdx2 highfracdx2
highdy2 lowfracdy2 highfracdy2

lowdxN highdxN lowfracdxN highfracdxN
lowdyN highdyN lowfracdyN highfracdyN

Example:

ASCII: PR 3 0 0 20 20 -20 40

HEX: 31 03 00 00 00 00 00 00 00 00
OA 00 00 00 OA 00 00 00
F6 FF 00 00 E2 FF 00 00

Errors: Not enough memory; arithmetic overflow

August 15, 1984
142 Professional Graphics Controller © Copyright IBM Corporation 1984

POLY3

Purpose:

Command:
~

Description:

Short Form:

Hex Format:

Example:

Errors:

~

(Polygon in 3D)

Draw a polygon in three dimensions.

POLY3 npts xl yl zl xn yn zn

POLY3 draws an absolute polygon in three
dimensions, where npts is the number of points,
and x, y, and z are the coordinates of the points.
The polygon is filled if the PRMFIL flag is set.
The current point does not change.

P3 npts xl yl zl xn yn zn

32 npts lowxl highxl lowfracxl highfracxl
lowyl highyl lowfracyl highfracyl
lowzl highzl lowfraczl highfraczl
lowx2 highx2 lowfracx2 highfracx2
lowy2 highy2 lowfracy2 highfracy2
lowz2 highz2 lowfracz2 highfracz2
.........

lowxN highxN lowfracxN highfracxN
lowyN highyN lowfracyN highfracyN
lowzN highzN lowfraczN highfraczN

ASCII:

P3 3 0 0 0 10 10 10 -10 30 -10

HEX:

32 03 00 00 00 00 00 00 00 00 00 00 00 00

OA 00 00 00 OA 00 00 00 OA 00 00 00
F6 FF 00 00 E2 FF 00 00 F6 FF 00 00

Not enough memory; arithmetic overflow

Professional Graphics Controller 143

POLYR3 (Polygon Relative in 3D)

Purpose: Draw a relative polygon in three dimensions.

Command: POLYR3 npts dxl dyl dzl dxn dyn dzn

Description: POLYR3 draws a relative polygon in three
dimensions, where npts is the number of points,
and dx, dy, and dz are the offsets from the current
point. The polygon is filled if the PRMFIL flag is
set. The current point is not affected.

Short Form: PR3 npts dxl dyl dzl dxn dyn dzn

Hex Format: 33 npts lowdxl
lowdyl
lowdz 1
lowdx2
10wdy2
lowdz2

highdxl lowfracdxl highfracdxl
highdyl lowfracdyl highfracdyl
highdz 1 lowfracdz 1 highfracdz 1
highdx2 10wfracdx2 highfracdx2
highdy2 10wfracdy2 highfracdy2
highdz2 lowfracdz2 highfracdz2

10wdxN highdxN 10wfracdxN highfracdxN r-....
10wdyN highdyN 10wfracdyN highfracdyN
10wdzN highdzN 10wfracdzN highfracdzN

Example:

ASCII :
PR3 3 0 0 0 10 10 10 -10 30 -10

HEX:
33 03 00 00 00 00 00 00 00 00 00 00 00 00

OA 00 00 00 OA 00 00 00 OA 00 00 00
F6 FF 00 00 E2 FF 00 00 F6 FF 00 00

Errors: Not enough memory; arithmetic overflow

August 15, 1984
144 Professional Graphics ControUer © Copyright IBM Corporation \984

PRMFIL 	 (Primitive Fill)

Purpose: 	 Set primitive fill flag.

Command: 	 PRMFIL flag

~ Description: 	 PRMFIL sets the primitive fill flag to the value
specified by flag. If flag is 0, closed figures are
drawn in outline only. If flag is 1, closed figures
are drawn filled with the current color. If flag is 2,
there is a performance improvement but
degenerate polygons will fill unpredictably.
PRMFIL affects the following commands:

CIRCLE, ELIPSE, POLY, POLYR, POLY3,
POLYR3, RECT, RECTR, SECTOR

Short Form: 	 PF flag

Hex Format: 	 E9 flag

Example:
~

ASCII: PF 1

HEX: E9 01

Errors: 	 None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 145

PROJCT (Projection)

Purpose: Set the type of projection.

Command: PROJCT angle

Description: PROJCT defines the type of projection used in the
three-dimensional to two-dimensional
transformation. If angle is 0, the projection is
orthographic parallel (non-oblique). Otherwise,
the projection is perspective, with angle being the
view angle (default is 60). The range of angle is 0
to 179 degrees.

Short Form: PRO angle

Hex Format: BO angle

Example:

ASCII: PR 0

HEX: BO 3C

Errors: Value out of range; arithmetic overflow

August 15, 1984
146 Professional Graphics Controller © Copyright IBM Corporation 1984

RECT (Rectangle)

Purpose: Draw an absolute rectangle in two dimensions.

Command: RECTxy

~

Description: 	 RECT draws a rectangle with one corner at the
current point and its diagonally opposite corner at
the point given. The current point does not move.
If the PRMFIL flag is set, the rectangle is drawn
filled.

Short Form: 	 Rxy

Hex Format: 34 	 lowx highx lowfracx highfracx
lowy highy lowfracy highfracy

Example:

ASCII: R 70.50 90.75

HEX: 34 46 	 00 00 80 5A 00 00 CO
~

Errors: 	 None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 147

RECTR (Rectangle Relative)

Purpose: Draw a relative rectangle in two dimensions.

Command: RECTR dx dy

Description: RECTR draws a rectangle. One corner is at the
current point, and its diagonally opposite corner is
offset by dx,dy. The current point does not move.
If the PRMFIL flag is set, the rectangle is drawn
filled.

Short Form: RR dx dy

Hex Format: 35 lowdx highdx lowfracdx
lowdy highdy lowfracdy

highfracdx
highfracdy

Example:

ASCII: RR -12.5 60

HEX: 35 F3 FF 00 80 3C 00 00 00

Errors: Arithmetic overflow

August 15, 1984
148 Professional Graphics Controller © Copyright IBM Corporation 1984

RESETF (Reset Flags)

Purpose: Reset program parameters.

Command: RESETF

Description: Reset all settable flags to their default values.

Flag Name

1 AREAPT

2 CLiPH

3 CLiPY

4 COLOR

5 DISPLA

6 DISTAN

7 DISTH

8 DISTY

9 FILMSK

10 LlNFUN

11 LlNPAT

12 MASK

13 MDORG

14 20 current point

15 3D current point

16 PRMFIL

17 PROJCT

18 TANGLE

19 TJUST

20 TSIZE

21 VWPORT

22 VWRPT

23 WINDOW

24 Transformed 3D
current point

Default Value

65535 16 times

Flag = 0

Flag = 0

Value = 255

No change after a RESETF

Distance = 500

Distance = -30000

Distance = 30000

Mask = 255

Function = 0

Pattern = 65535

Mask = 255

OX = OY = OZ = 0

X=Y=O

X=Y=Z=O

Flag = 0

Angle = 60

Angle = 0

H=V=1

Size = 8

0,639,0,479

X=Y=Z=O

-320,319, -240, 239

X=Y=Z=O

Solid area

Disabled

Disabled

No PEL draw
effect

Replacement
mode

Solid line

All planes
enabled

Primitive fill off

Horizontal,
left- right text

Left, bottom
justification

12 by 8 cell
characters

Entire screen

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 149

Short Form: RF

Hex Format: 04

Example:

ASCI I: RF

HEX: 04

Errors: None

August 15, 1984
150 Professional Graphics Controller © Copyright IBM Corporation 1984

SECTOR 	 (Sector)

Purpose: 	 Draw a sector in two dimensions.

Command: 	 SECTOR radius degO degl

Description: 	 SECTOR draws a pie-shaped sector that consists
of an arc with a given radius, with the arc spanning
two given angles, and a vector from the center of
the arc to each of the arc's endpoints. If the
PRMFIL flag is set, the sector is drawn filled.
radius is a real number. Angles are integers and
treated modulo-360. If radius is negative, 180
degrees are added to each angle.

Short Form: 	 S radius degO degl

Hex Format: 3D 	 lowradius highradius

lowfracradius highfracradius

10wdegO highdegO

lowdegl highdegl

~
Example:

ASCII: S 50 -90 30

HEX: 3D 32 	 00 00 00 A6 FF IE 00

Errors: 	 Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 151

TANGLE (Text Angle)

Purpose: Set text angle.

Command: TANGLEdeg

Description: TANGLE specifies the angle for drawing text. An
angle of 0 (default) causes the text to be drawn
normally from left to right.

Short Form: TA deg

Hex Format: 82 lowdeg highdeg

Example:

ASCII: TA 90

HEX: 82 SA 00

Errors: None

August 15, 1984
152 Professional Graphics Controller © Copyright IBM Corporation 1984

TDEFIN (Text Define)

Purpose: 	 Define programmable text character.

~ Command: TDEFIN N x y array

Description: 	 TDEFIN stores the character image given by x, y,
and array for a character with the ASCII value of
N. If communication is in ASCII, the character
image is to be sent as a series of O's and 1 'so If
communication is in hexadecimal, the character is
sent as a series of bytes, as many for each line as
required, for as many lines as specified.

Short Form: 	 TD N x y array

Hex Format: 84 N x y linelbytel line 1 byte2 linelbyteX
line2bytel line2byte2 line2byteX

line Ybyte 1 line Ybyte2 . .. line YbyteX

Example:

ASCII: T 65 70 12 14

HEX: 84 62 	 05 07 IE 11 11 IE 10 10 10

Errors: 	 Not enough memory

August 15, 1984
CO Copyright IBM Corporation 19S4 Professional Graphics Controller 153

TEXT (Text)

Purpose: Draw hardware font text.

Command: TEXT 'string'
TEXT "string"

Description:

Short Form:

TEXT writes a text string to the screen, justified
about the current point as specified by the last
TJUST command. The string may be delimited by
either single or double quotes.

T 'string'
T "string"

Hex Format: 80 22 el e2 e3
eN 22

or
80 27 c1 e2 e3

..... cN27

Example:

ASCII: T 'This is a test'

HEX: 80 27
6C

58 20 65
73 20 31

71
2E

75 61
34 27

Errors: Not enough memory

August 15, 1984
154 Professional Graphics Controller © Copyright IBM Corporation 1984

TEXTP (Text Programmed)

Purpose: 	 Draw text using a programmed font.

~ Command: 	 TEXTP 'string'
TEXTP "string"

Description: 	 TEXTP draws text with the user-programmed
font. The size is that specified by the latest TSIZE
command, and the angle is that specified by
T ANGLE. The text is justified about the current
point.

Short Form: 	 TP'string'

TP "string"

Hex Format: 83 22 cl c2 c3

cN22

or

83 27 cl c2 c3

..... cN 27

Example:

ASCII: TP 'Hello'

HEX: 83 27 48 65 	 6C 6F 27

Errors: 	 Not enough memory

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 155

TJUST (Text Justify)

Purpose: Set text justification

Command: TJUST horiz vert

Description: The TJUST command specifies the text
justification, where horiz is one of the following:

1
2

3

Left justify text at current point.
Center the text string about the current
point.
Right justify text at current point.

vert is one of the following:

1

2

3

Bottom of text at Y coordinate of current
point.
Center text string vertically about the
current point.
Top of text at Y coordinate of current
point.

The default is H = 1, V = 1.

Short Form: TJ horiz vert

Hex Format: 85

Example:

ASCII: TJ 2 1

HEX: 85 02 01

Errors: Value out of range

August 15, 1984
156 Professional Graphics Controller co Copyright IBM Corporation 19X4

TSIZE

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

~ Errors:

(Text Size)

Set the text size.

TSIZE size

TSIZE sets text size by specifying the virtual x
distance from one character to the next when
displayed.

TS size

81 	 lowsize highsize
lowfracsize highfracsize

ASCII: TS 10

HEX: 81 OA 00 00 00

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 157

VWIDEN (Viewing Identity)

Purpose: Reset the viewing matrix.

Command: VWIDEN

Description: VWIDEN sets the viewing transformation matrix
to the identity matrix.

Short Form: VWI

Hex Format: AO

Example:

ASCII: VWI

HEX: AD

Errors: None

August 15, 1984
158 Professional Graphics ControUer © Copyright IBM Corporation 1984

VWMATX (Viewing Matrix)

Purpose: Define the viewing matrix.

Command: VWMATX array
~

Description: VWMATX loads the viewing matrix directly from

Short Form:

Hex Format:

Example:

the 4-by-4 array.

VWM array

A7lowmll highmll
lowm12 highm12
lowm13
lowm14
lowm21
lowm22
lowm23
lowm24
lowm31

highm13
highm14
highm21
highm22
highm23
highm24
highm31

lowm32 highm32
lowm33 highm33
lowm34 highm34
lowm41
lowm42
lowm43
lowm44

ASCII: VWM

highm41
highm42
highm43
highm44

68

lowfracmll highfracmll
lowfracm12 highfracm12
lowfracm13 highfracm13
lowfracm14 highfracm14
lowfracm21 highfracm21
lowfracm22 highfracm22
lowfracm23 highfracm23
lowfracm24 highfracm24
lowfracm31 highfracm31
lowfracm32 highfracm32
lowfracm33 highfracm33
lowfracm34 highfracm34
lowfracm41 highfracm41
lowfracm42 highfracm42
lowfracm43 highfracm43
lowfracm44 highfracm44

12.5 253 17.25
65503.5 0 306.25 34
8418 2628.25 1. 75 0.5
313.75 50.25 1 1.5

HEX: A7 	 44 00 00 00 DC 00 00 80 FO 00
00 00 11 00 00 40 OF FF 00 80
00 00 00 00 32 01 00 40 22 00
00 00 E2 20 00 00 44 OA 00 40
01 00 00 CO 00 00 00 80 39 01
00 CO 32 00 00 40 01 00 00 00
01 00 00 80

Arithmetic overflow Errors:

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 159

VWPORT (Viewport)

Purpose: Define a viewport.

Command: VWPORT xl x2 y1 y2

Description: VWPORT defines a viewport within the viewplane
and is measured in PELs from the lower-left
corner of the screen. Clipping is always enabled.
The default is the entire screen (0,639 and 0,479).
xl must be less than x2; otherwise, a warning is
generated and the coordinates are swapped. The
same is true for yl andy2. A warning is generated
if any of the coordinates fall outside the screen
boundary.

Short Form: VWP xl x2 y1 y2

Hex Format: B2 lowx1 highx1 lowx2 highx2
lowy 1 highy 1 lowy2 highy2

Example:

ASCII: VWP 50 450 30 250

HEX: 82 32 00 C4 01 IE 00 FA 00

Errors: Arithmetic overflow

August 15, 1984
160 Professional Graphics Controller © Copyright IBM Corporation 1984

VWROTX

Purpose:

Command:,,-......,
Description:

Short Form:

Hex Format:

Example:

Errors:
~

(Viewing Rotate X Axis)

Rotate viewing about the x axis.

VWROTXdeg

VWROTX defines the rotation about the x axis
component of the viewing matrix.

VWXdeg

A3 lowdeg highdeg

ASCI I: VWX 30

HEX: A3 20 00

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 161

VWROTY (Viewing Rotate Y Axis)

Purpose: Rotate viewing about the y axis.

Command: VWROTY deg

Description: VWROTY defines the rotation about the y axis
component of the viewing matrix.

Short Form: VWY deg

Hex Format: A4 lowdeg highdeg

Example:

ASCII: VWY 45

HEX: A4 IE 00

Errors: Arithmetic overflow

August 15, 1984
162 Professional Graphics Controller © Copyright IBM Corporation 1984

VWROTZ (Viewing Rotate Z Axis)

Purpose: Rotate viewing about the z axis.

Command: VWROTZ deg

Description: VWROTZ defines the rotation about the z axis
component of the viewing matrix.

Short Form: VWZ deg

Hex Format: A5 lowdeg highdeg

Example:

ASCII: VWZ 30

HEX: AS 44 00

Errors: Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 163

VWRPT (Viewing Reference Point)

Purpose: Define the viewing reference point.

Command: VWRPT x y z

Description: VWRPT defines the viewing reference point (the
point the user is looking at); specified by x,y,z.

Short Form:

Hex Format:

VWR x y z

Allowx highx lowfracx
lowy highy lowfracy
lowz highz lowfracz

highfracx
highfracy
highfracz

Example:

ASCII: VWR 50 75 -25

HEX: Al 32 00 00 00 4B 00 00 00 E7 FF 00 00

Errors: Arithmetic overflow

August 15, 1984
164 Professional Graphics ControUer © Copyright IBM Corporation 1984

WAIT (Wait)

Purpose: Insert a delay in execution.

Command: WAIT frames

Description: WAIT inserts a delay in the execution of
commands by waiting the number of frames
specified by frames. A frame is 1/60 second.
With the maximum of 65535 frames, a delay of up
to 20 minutes may be inserted.

Short form: W frames

Hex Format: 05 lowframes highframes

Example:

ASCII: W60

HEX: 05 3C 00

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 165

WINDOW (Window)

Purpose: Define the viewport coordinates.

Command: WINDOW xl x2 y1 y2

Description: WINDOW defines the corner coordinates of the
viewport. These two-dimensional real coordinates
will map to the screen's PEL locations specified by

. the most recent VWPORT command.

Short Form: WI xl x2 yl y2

Hex Format: B3 10wx1eft
lowfracxleft
lowxright
lowfracxright
lowybottom
lowfracybottom
lowytop
lowfracytop

highxleft
highfracxleft
highxright
highfracxright
highybottom
highfracybottom
highytop
highfracytop

Example:

ASCII: WI -100 100 100 100

HEX: 83 96 FF 00 00 64 00 00 00
64 00 00 00 64 00 00 00

Errors: Arithmetic overflow

August 15, 1984
166 Professional Graphics Controller © Copyright IBM Corporation 1984

Run-Length Encoding

In hexadecimal mode, the commands IMAGER and IMAGEW
send and receive data in run-length encoded format. This format
allows for extremely high data rates. The format is described as

,.-......" follows:

Command (1 byte) IMAGER or IMAGEW
Line # (1 word)
Start x
End x
One or more PEL packets

A PEL packet is either of the following:

• A solid block of one color:

Count (1 byte: N - 1)

Color (1 byte)

The count may range from 0 to 127 (N = 1 to 128),

with the most-significant bit set to O. This packet

defines multiple occurrences of the same color and

requires only two bytes to specify up to 128 PELs.

• PELs of different colors:

Count (1 byte: N - 1 + 128)

PEL 0

PEL 1

PEL 2

PEL N - 1 (N bytes)

The count may range from 128 to 255 (N = 1 to 128),

with the most-significant bit set to 1. This packet

defines strings of color codes that are different from one

another.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 167

Default LUT Selections for LUTINT

Each state provides a distinct way for initializing the look-up
table (LUT). Following are descriptions for each currently
defined state. The descriptions include a list of the default values
for that LUT. ~

State 0

State 0 reproduces a color-cone distribution. The 8-bit LUT
value divides into two 4-bit hexadecimal digits. The
least-significant digit supplies the luminance value, and the
most-significant digit supplies the color scale, each of the 16
values corresponding to a color. The color scale shades from
black through the given color to white.

August 15, 1984
168 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table shows the default values of state 0 for the
various colors.

Color Default Values (on Hex) for State 0

Black to Grey to White
000
888

111
999

222
AAA

333
BBB

444
CCC

555
DDD

666
EEE

777
FFF

Black to Red to White 000
FOO

200
F22

400
F44

600
F66

800
F88

ADO
FAA

COO
FCC

EOO
FEE

Black to Red-magenta to White
000
F08

201
F29

402
F4A

603
F6B

904
F8C

A05
FAD

C06
FCE

E07
FEF

Black to Magenta to White
000
FOF

202
F2F

404
F4F

606
F6F

808
F8F

ADA
FAF

CDC
FCF

EOE
FEF

Black to Magenta-blue to White
000
80F

102
92F

204
A4F

306
B6F

408
C8F

50A
DAF

60C
ECF

70E
FEF

Black to Blue to White 000
OOF

002
22F

004
44F

006
66F

008
88F

OOA
AAF

DOC
CCF

DOE
EEF

Black to Blue-cyan to White 000
08F

012
29F

042
4AF

036
6BF

048
8CF

05A
ADF

06C
CEF

07E
EFF

Black to Cyan to Whi te 000
OFF

022
2FF

044
4FF

066
6FF

088
8FF

OAA
AFF

OCC
CFF

DEE
EFF

Black to Cyan-green to White 000
OF8

021
2F9

042
4FA

063
6FB

084
8FC

OA5
AFD

OC6
DFE

OE7
EFF

Black to Green to White
000
OFO

020
2F2

040
4F4

060
6F6

080
8F8

DAD
AFA

OCO
CFC

OED
EFE

Black to Green-yellow to White 000
8FO

120
9F2

240
AF4

360
BF6

480
CF8

5AO
DFA

6CO
EFC

7EO
EFF

Black to Yellow to White 000
FFO

220
FF2

440
FF4

660
FF6

880
FF8

AAO
FFA

CCO
FFC

EEO
FFE

Black to Yellow-red to White 000
F80

210
F92

420
FA4

630
FB6

840
FC8

A50
FDA

C60
FEC

E70
FFE

Black to Unsaturated Red to White 000
F88

211
F99

422
FAA

633
FBB

844
FCC

A55
FDD

C66
FEE

E77
FFF

Black to Unsaturated Green to White 000
8F8

121
9F9

242
AFA

363
BFB

484
CFC

5A5
DFD

6C6
EFE

7E7
FFF

Black to Unsaturated Blue to White 000
88F

112
99F

224
AAF

336
BBF

448
CCF

55A
DDF

66C
EEF

77E
FFF

August 15, 1984
© Copyright IBM Corporation 19R4 Professional Graphics ControUer 169

State 1

State 1 divides the 8-bit LUT value into two 4-bit hexadecimal
digits. The least-significant digit provides the background color,
and the most-significant digit defines the foreground color. The
high-function graphics mode interprets a value of 0000 for the
most-significant digit as a transparent foreground, allowing the
background color to be displayed. Otherwise, the high-function
graphics mode ignores the background color.

The following table lists the colors represented by each 4-bit
value for State 1.

Value Color RGB

0 Sky Blue (backQround only) 68D

1 Black 000
2 Dark Brown 742
3 Light Brown A74
4 Dark Red 700
5 LiQht Red FOO
6 OranQe F70
7 Yellow FFO
8 Yellow-Green AFO
9 Light Green OFO
A Dark Green 070
B Green-Blue 077
C Dark Blue 007
D LiQht Burnt-Sienna E96

E Grey 777
F White FFF

August 15,1984
170 Professional Graphics Controller © Copyright IBM Corporation 1984

States 2 through 4

For states 2 through 4, red, green, and blue LUT values employ
either two or three bits of information. For each state, one color
receives two bits while the other two colors each receive three.

~ 	Each bit value then translates to an RGB intensity of that color.
The following tables give the corresponding intensity values for
each bit value.

2-Bit Intensity Values

Decimal Bit Intensity
Value Value Level

0 o 0 0

1 o 1 5

2 1 0 10

3 1 1 15

3-Bit Intensity Values

Decimal Bit Intensity
Value Value Level

0 goo 0

1 o 0 1 3

2 010 5

3 o 1 1 7

4 1 o 0 9

5 1 o 1 11

6 1 1 0 13

7 1 1 1 15

State 2 uses two bits for red (R), three bits for green (G), and
three bits for blue (B). Thus, R R G G G B B B means:

IR R IG G G IB 	 B B ~ 8-Bit code ' Three bits for blue intensity valueI L...-______ Three bits for green intensity value--..

1...-________.... Two bits for red intensity value

August 15, 1984

© Copyright IBM Corporation 1984 Professional Graphics ControUer 171

Similarly, state 3 uses two bits for green and three bits each for
red and blue (R R R G G B B B). State 4 allows two bits for blue
and three bits each for red and green (R R R G G G B B).

August 15,1984
172 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table shows the default values for state 2.

Default Values (in Hex) for State 2

000 003 005 007 009 OOB 000 OOF
030 033 035 037 039 03B 030 03F
050 053 055 057 059 05B 050 05F
070 073 075 077 079 07B 070 07E
090 093 095 097 099 09B 090 09F
OBO OB3 OB5 OB7 OB9 OBB OBO OBF
000 003 005 007 009 OOB 000 OOF
OFO OF3 OF5 OF7 OF9 OFB OFD OFF
050 503 505 507 509 50B 500 50F
530 533 535 537 539 53B 530 53F
550 553 555 557 559 55B 550 55F
570 573 575 577 579 57B 570 57F
590 593 595 597 599 59B 590 59F
5BO 5B3 5B5 5B7 5B9 5BB 5BO 5BF
500 503 505 507 509 50B 500 50F
5FO 5F3 5F5 5F7 5F9 5FB 5FD 5FF
AOO A03 A05 A07 A09 AOB AOO AOF
A30 A33 A35 A37 A39 A3B A30 A3F
A50 A53 A55 A57 A59 A5B A50 A5F
A70 A73 A75 A77 A79 A7B A70 A7F
A90 A93 A95 A97 A99 A9B A90 A9F
ABO AB3 AB5 AB7 AB9 ABB ABO ABF
ADO A03 A05 A07 A09 AOB ADD AOF
AFO AF3 AF5 AF7 AF9 AFB AFO AFF
FOO F03 F05 F07 F09 FOB FOO FOF
F30 F33 F35 F37 F39 F3B F30 F3F
F50 F53 F55 F57 F59 F5B F50 F5F
F70 F73 F75 F77 F79 F7B F70 F7F
F90 F93 F95 F97 F99 F9B F90 F9F
FBO FB3 FB5 FB7 FB9 FBB FBO FBF
FDO F03 F05 F07 F09 FDB FDO FOF
FFO FF3 FF5 FF7 FF9 FFB FFD FFF

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 173

The following table shows the default values for state 3.

Default Values (in Hex) for State 3

000 003 005 007 009 OOB 000 OOF
050 053 055 057 059 05B 050 05F
OAO OA3 OA5 OA7 OA9 OAB OAO OAF
OFO OF3 OF5 OF7 OF9 OFB OFO OFF
300 303 305 307 309 30B 300 30F
350 353 355 357 359 35B 350 35F
3AO 3A3 3A5 3A7 3A9 3AB 3AO 3AF
3FO 3F3 3F5 3F7 3F9 3FB 3FO 3FF
500 503 505 507 509 50B 500 50F
550 553 555 557 559 55B 550 55F
5AO 5A3 5A5 5A7 5A9 5AB 5AO 5AF
5FO 5F3 5F5 5F7 5F9 5FB 5FO 5FF
700 703 705 707 709 70B 700 70F
750 753 755 757 759 75B 750 75F
7AO 7A3 7A5 7A7 7A9 7AB 7AO 7AF
7FO 7F3 7F5 7F7 7F9 7FB 7FO 7FF
900 903 905 907 909 90B 900 90F
950 953 955 957 959 95B 950 95F
9AO 9A3 9A5 9A7 9A9 9AB 9AO 9AF
9FO 9F3 9F5 9F7 9F9 9FB 9FD 9FF
BOO B03 B05 B07 B09 BOB BOD BOF
B50 B53 B55 B57 B59 B5B B50 B5F
BAO BA3 BA5 BA7 BA9 BAB BAD BAF
BFO BF3 BF5 BF7 BF9 BFB BFO BFF
000 003 005 007 009 OOB DOD OOF
050 053 055 057 059 05B 050 05F
OAO OA3 OA5 OA7 OA9 DAB DAD OAF
OFO OF3 OF5 OF7 OF9 OFB OFO OFF
FOO F03 F05 F07 F09 FOB FOO FOF
F50 F53 F55 F57 F59 F5B F50 F5F
FAO FA3 FA5 FA7 FA9 FAB FAD FAF
FFO FF3 FF5 FF7 FF9 FFB FFO FFF

August 15, 1984
174 Professional Graphics ControUer © Copyright IBM Corporation 1984

The following table shows the default values for state 4.

Default Values (in Hexl for State 4

000 005 OOA OOF 030 035 03A 03F
050 055 05A 05F 070 075 07A 07F
090 095 09A 09F OBO OB5 OBA OBF
ODO OD5 ODA ODF OFO OF5 OFA OFF
300 305 30A 30F 330 335 33A 33F
350 355 35A 35F 370 375 37A 37F
390 395 39A 39F 3BO 3B5 3BA 3BF
3DO 3D5 3DA 3DF 3FO 3F5 3FA 3FF
500 505 50A 50F 530 535 53A 53F
550 555 55A 55F 570 575 57A 57F
590 595 59A 59F 5BO 5B5 5BA 5BF
5DO 5D5 5DA 5DF 5FO 5F5 5FA 5FF
700 705 70A 70F 730 735 73A 73F
750 755 75A 75F 770 775 77A 77F
790 795 79A 79F 7BO 7B5 7BA 7BF
7DO 7D5 7DA 7DF 7FO 7F5 7FA 7FF
900 905 90A 90F 930 935 93A 93F
950 955 95A 95F 970 975 97A 97F
990 995 99A 99F 9BO 9B5 9BA 9BF
9DO 9D5 9DA 9DF 9FO 9F5 9FA 9FF
BOO B05 BOA BOF B30 B35 B3A B3F
B50 B55 B5A B5F B70 B75 B7A B7F
B90 B95 B9A B9F BBO BB5 BBA BBF
BDO BD5 BDA BDF BFO BF5 BFA BFF
DOO D05 DOA DOF D30 D35 D3A D3F
D50 D55 D5A D5F D70 D75 D7A D7F
D90 D95 D9A D9F DBO DB5 DBA DBF
DDO DD5 DDA DDF DFO DF5 DFA DFF
FOO F05 FOA FOF F30 F3E F3A F3F
F50 F55 F5A F5F F70 F75 F7A F7F
F90 F05 F9A F9F FBO FB5 FBA FBF
FDO FD5 FDA FDF FFO FF5 FFA FFF

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 175

State 5

In state 5, the 8-bit value becomes the arithmetic result of the

formula (R x 36) + (G x 6) + B, where R, G, and B represent

coded values of intensity levels ranging from 0 to 5. The

following table defines which coded values correspond to which

intensity levels.

Coded

RGB

Values

0

1

2

3

4

5

Actual Intensity
levels

0

3

6

9

12

15

August 15, 1984
176 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table shows the default values for state 5:

Default Values (in Hex) for State 5

000 003 006 009 DOC OOF 030 033
036 039 03C 03F 060 063 066 069
06C 06F 090 093 096 099 09C 09F
OCO OC3 OC6 OC9 OCC OcF OFO OF3
OF6 OF9 OFC OFF 300 303 306 309
30C 30F 330 333 336 339 33C 33F
360 363 366 369 36C 36F 390 393
396 399 39C 39F 3CO 3C3 3C6 3C9
3CC 3Cf 3FO 3F3 3F6 3F9 3FC 3FF
600 603 606 609 60C 60F 630 633
636 639 63C 63F 660 663 666 669
66C 66F 690 693 696 699 69C 69F
6CO 6C3 6C6 6C9 6CC 6CF 6FO 6F3
6F6 6F9 6FC 6FF 900 903 906 909
90C 90F 930 933 936 939 93C 93F
960 999 99C 99F 9CO 9C3 9C6 9C9
996 999 99C 99F 9CO 9C3 9C6 9C9
9CC 9CF 9FO 9F3 9F6 9F9 9FC 9FF
COO C03 C06 C09 CDc COF C30 C33
C36 C39 C3C C3F C60 C63 C66 C69
C6C C6F C90 C93 C96 C99 C9C C9F
CCO CC3 CC6 CC9 CCC CCF CFO CF3
CF6 CF9 CFC CFF FOO F03 F06 F09
FOC FOF F30 F33 F36 F39 F3C F3F
F60 F99 F9C F9F FCO Fc3 FC6 FC9
f96 F99 F9C F9F FCO FC3 FC6 FC9
FCC FCF FFO FF3 FF6 FF9 FFC FFF
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 177

State 2SS

State 255 restores the LUT values that were previously saved
with the command LUTSAV. These tables can include
user-defined values.

August 15, 1984
178 Professional Graphics Controller © Copyright IBM Corporation 1984

Interface

The following illustration shows the location of the connectors
and jumper on the Professional Graphics Controller.

Emulator
Enable/Disable
Connector

Enabled

9-Pin D-Shell

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 179

Connector Specifications
The following table shows the pin numbers and their respective
signals.

S'IgnaINarne/Descriptlon

Red Video

Green Video

Blue Video
Professional Horizontal and Vertical Sync
Graphics Mode Control
Display Ground for Pin 1

Ground for Pin 2

Ground for Pin 3

Ground for Pins 4 and 5

Pm

1

2

3
4 Professional

5 Graphics

6 Controller

7

8
9

August 15, 1984
180 Professional Graphics Controller © Copyright IBM Corporation 1984

Specifications

The following is a description of the Professional Graphics
Controller specifications.

Size:

Length: 668 mm (4.2 in.)

Depth: 32 mm 0.26 in.)

Height: 210 mm (3.36 in.)

Weight: 90.72 kg (2Ib)

Power Requirements:

Voltage: 5 VDC (+/-5%)

Current: 5 A Maximum

Power Dissipation: 25 W Maximum

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 181

Notes:

August 15, 1984
182 Professional Graphics Controller © Copyright IBM Corporation 1984

Logic Diagrams

This section shows the logic diagrams for:

• Professional Graphics Controller's processor card

• Professional Graphics Controller's emulator card

• Professional Graphics Controller's memory card

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 183

'-&lL

" , I" ,
Q 0
w •
> >

""ij)'j'j'i'i'fi'i'lI11)'i'lli'i'~
8D88~~~QCC .'-o<ouo

~;~~g~;~~~ ~~~~iiii

~ ~ §
~ ~

III II !IIIII!III
~ ~;: ;:

~ i~ ~~~
I II III

August 15, 1984
184 Professional Graphics Controller © Copyright IBM Corporation 1984

.....
'0
('II

t;
GI

..c:
CI)

nil III
~9~9~~~~

"--

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 185

August 15, 1984
186 Professional Graphics Controller © Copyright IBM Corporation 1984

B8: ::~

August 15, 1984

© Copyright IBM Corporation 1984 Professional Graphics Controller 187

I' ...
o
It) ...
Q)

Q)

.s:::
I/)

c

1111!lillllm

-~-

August 15, 1984
188 Professional Graphics Controller © Copyright IBM Corporation 1984

mfun I jj
~~~~~~~~ ~~ 
~&b~bt,~~ ~[ [[ [~
;;; ;: 

"--" 

August 15, 1984 
(0 Copyright IBM Corporation 1984 Professional Graphics Controller 189 



I' .... 
~~~ 0 

~~~ 
-Hmm I' ... 

CD 
CD 

111111 .c 
II) 

August 15, 1984 
190 Professional Graphics ControUer © Copyright IBM Corporation 1984 



) 
) 

) 
6>


('

)t
::

oC
lO

 
'O

t:
:

'<
'"

 	
J2

~
.
 

f'"
"t

-
J1

 
J1

 
J2

 

'§
.-

P
IN

 
P

IN
 

P
IN

 
P

IN
 

~
V
l -. 

1 
IN

IT
L

(3
) 

2 
	

1 
(5

) 
L

lN
C

N
T

R
C

O
L

 
2 

CO
 

::
::

 	..
.....

 
3 

4 
3 

E
R

A
S

H
I3

,4
) 



\0

 

5 

D
O

T
C

L
K

 1
4

,5
,6

) 
6 

+
5

 
5 

+
5

 	
A

E
R

A
S

H
I3

,4
,6

)
('

)0
0

 

:;

+
:-

7 
8 

7 
E

D
IS

P
H

/C
P

U
I3

,4
) 



'0

 
0 

9 
1

0
 

9 
1

0
 

§. 
11

 
1

2
 

11
 

1
2

 
(5

' 
1

3
 

1
4

 
1

3
 	

1
4

::>
 

1
5

 
1

6
 

1
5

 
1

6
--0 0

0
 

1
7

 
1

8
 

E
R

D
L

(5
) 

1
7

 	
1

8
.. 

(5
)E

M
O

H
 

1
9

 
2

0
 

E
W

R
L

I3
,5

) 
1

9
 	

2
0

 
H

U
M

P
L

(5
) 

(5
)E

M
1

H
 

21
 

2
2

 
¢

3
B

I3
,5

,6
) 

21
 

2
2

 
L

lN
C

N
T

E
N

(5
) 

~
 

(5
)E

M
2

H
 

2
3

 
2

4
 

(1
)l

B
(3

,5
) 

2
3

 
F

U
N

C
T

IO
N

W
T

L
(5

) 
2

4
 

D
IS

P
L

/C
P

U
(3

)
0 -.

 
2

5
 

C
P

U
D

A
T

O
I3

,5
,6

) 
2

6
 

C
P

U
D

A
T

4
1

3
,5

,6
) 

2
5

 
C

U
R

S
O

R
W

T
L

(6
) 

2
6

 
H

E
N

H
(3

) 
~
 

'I
J 

2
7

 
C

P
U

D
A

T
lI

3
,5

,6
) 

2
8

 
C

P
U

D
A

T
5

1
3

,5
,6

) 
2

7
 

2
8

 

0 ~"
 

2
9

 
C

P
U

D
A

T
2

1
3

,5
,6

) 
3

0
 

C
P

U
D

A
T

6
1

3
,5

,6
) 

2
9

 
3

0
 

=
 

31
 

C
P

U
D

A
T

J
I3

,5
,6

) 
3

2
 

C
P

U
D

A
T

7
1

3
,5

,6
) 

31
 

3
2

 

e. 
3

3
 

C
P

U
A

D
O

(3
) 

3
4

 
S

T
A

R
T

A
D

D
W

T
L

(3
) 

3
3

 
3

4
 

C'.
l 

3
5

 
C

P
U

A
D

l(
3

) 
3

6
 

C
P

U
A

D
9

(3
) 

3
5

 
(5

)P
IX

B
U

S
O

 
3

6
., 

3
7

 
C

P
U

A
D

2
(3

) 
3

8
 

C
P

U
A

D
1

0
(3

) 
3

7
 

A
(3

) 
(5

)P
IX

B
U

S
1

 
3

8
 

-= 	 :r-
3

9
 

C
P

U
A

D
3

(3
) 

4
0

 
C

P
U

A
D

ll
(3

) 
3

9
 

B
(3

) 
(5

)P
IX

B
U

S
2

 
4

0
 

i;"
 

41
 

C
P

U
A

D
4

(3
) 

4
2

 
C

P
U

A
D

1
2

(3
) 

41
 

C
(3

) 
(5

)P
IX

B
U

S
3

 
4

2
 

'I
J 

4
3

 
C

P
U

A
D

5
(3

) 
4

4
 

C
P

U
A

D
1

3
(3

) 
4

3
 

D
(3

) 
(5

)P
IX

B
U

S
4

 
4

4
 

I""
.l 

4
5

 
C

P
U

A
D

6
(3

) 
4

6
 

+
5

 
4

5
 

+
5

 
(5

)P
IX

B
U

S
5

 
4

6
 

~
 

0 
4

7
 

C
P

U
A

D
7

(3
) 

4
8

 
4

7
 	

(5
)P

IX
B

U
S

6
 

4
8

 
..... .,=

 
4

9
 

C
P

U
A

D
8

(3
) 

5
0

 
4

9
 	

(5
)P

IX
B

U
S

7
 

5
0

 
0 =

 
~ ., 

S
h

e
e

t 
1 

o
f 

5 
.... -0 .... 



10 

'0 
N 

II .. 
~~~~~ ! ! 

~~~~i 
----~~ 

August 15, 1984 
192 Professional Graphics Controller © Copyright IBM Corporation 1994 



~~ 
~~ss~~ 

~III lillUiII IJlUJJ 

!~:~~1~~ . " 
~~~ 

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 193

~ ZO,
~" ~~ ~" ~~~ "

~ ~ ~~ ~~~ ~
~--~

August 15, 1984
194 Professional Graphics Controller © Copyright IBM Corporation 1984

,
" 5~=
~ @~~

g
w ~ ~ &~~

..I ,.1 .I
5~ .~

" " .1.,-------------,
I ~o~a~}_
~a:; a~~ "s"f-l
'J' 'IT~~~~~~~

-

I I I I I I
;t~ ,
OU•~
~§

mm~~ :::
~ ~~~~g~~~ iii ~ ~
~ ~~

i
i
~

'i: ~ ~
<!!----'e

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 195

.... \C
 "" "'Q ""

I
J2

J2

=

P

A
l

P
81

J
l

J
l

~

P
IN

P

IN

S
P

A
R

E

(I
J

P
IN

P

IN

P
IN

P

IN

[!
l.

81

G
N

D

I
IN

IT
L

 (
8

)
2

E

R
A

$
H

{N
C

)

A
l

=

3
IN

IT
H

 (
9

)

A
3

8

3

'5
V

IS

)D
O

T
C

L
K

R

E
S

E
R

V
E

D

R
E

S
E

R
V

E
D

E

C
A

S
H

(N
C

I

!.
 =

A
4

8

4

M
O

D
E

 W
T

L
 I

S
)

E
V

E
R

E
S

T
l(

 1
0)

A

D
O

II
O

)
E

D
I$

P
H

/C
P

U
(N

C
)

A
2

8

2

8
5

S

P
A

R
E

10

D

IS
P

R
D

l
(8

,1
0

)
A

D
1

1
1

0
i

lP
E

N
S

W

1
0

~

8
6

11

S

P
A

R
E

1

2

D
I$

P
R

W
R

l(
B

,1
0

)
11

A

D
2

(1
0

)
L

P
E

N
1

N
P

U
T

1

2

A
S

A
6

~

A
7

8

7

1
3

D

R
A

M
4

(9
)

(9
)D

IS
P

R
D

Y
L

1

4

""
I

13

A
D

3
(1

0
)

(9
)A

D
V

W
H

S
Y

N
C

S
C

A
N

14

'C e:
A

8

8
8

1

5

[)
R

A
M

3
1

9
1

1

6

X
S

Y
N

(S
)

1
5

A

D
4

(l
Q

f
1

6

S
P

A
R

E

A
9

8

9

+
1

2
V

1

7

D
A

A
M

2
1

9
)

1
8

E

R
D

L
(N

C
)

17

A
O

:,
(1

0
)

1
8

L

P
S

T
(N

C
)

f'
)

A
l0

8

1
0

1

9

E
M

O
H

(N
C

)
2

0

-
E

R
W

l(
N

C
i

1
9

A

D
6

1
1

0
1

2

0

H
U

M
P

L
(N

C
)

(I
J

2
2

L

lN
C

N
T

E
N

(N
C

)

~

A
1

2

8
1

2

23

A
ll

B
ll

21

E
M

1
H

(N
C

I
(8

1
0

3
8

2

2

21

A
D

7
1

1
0

1

E
M

2
H

(N
C

)
(8

)
a

1
8

2

4

2
3

F

U
N

C
T

IO
N

 W
T

L
 I

N
C

)
IB

)D
IS

P
L

IC
P

U

24

=

C
P

U
O

A
T

O
ll

m

7
6

C

P
U

O
A

T
4

(1
O

)
2

5

S
E

T
L

P
E

N
l(

N
C

)
2

6

M
E

N
(S

,9
)

A
1

4

8
1

4

2
7

C

P
U

D
A

T
l(

lO
)

2
8

27

A

1
3

8

1
3

2

5

C
P

U
O

A
T

5
1

1
0

l
C

L
R

lP
E

N
L

(N
C

)
(9

IC
A

S
4

T
l

2
8

.... =

C
P

U
D

A
T

2
(1

()
)

3
0

C

P
U

O
A

T
6

1
1

0
1

29

S

T
A

T
S

E
L

L
(N

C
)

3
0

S

P
A

R
E

""
I

A
1

5

8
1

5

2
9

=

A
1

6

8
1

6

31

C
P

U
D

A
T

3
(1

0
1

3

2

C
P

U
O

A
T

7
1

1
0

1

31

O
IS

A
C

C
H

IB
)

3
2

S

P
A

R
E

=

A
1

7

8
1

7

3
3

C

P
U

A
D

O
ts

l
3

4

S
T

A
R

T
A

D
O

W
T

L
IN

C
)

3
3

N

ll
A

I
3

4

S
P

A
R

E

~

""
I

A
I8

8

1
8

3

5

C
P

U
A

D
l

(8
)

3
6

C

P
U

A
D

9
IN

C
)

3
5

-
N

6
I
a

)

1
1

O
)P

IX
B

U
$

O

3
6

A
1

9

8
1

9

37

C
P

U
A

D
2

(S
)

3
8

C

P
U

A
D

lO
IN

C
)

3
7

A

iN
C

I
(1

0
IP

IX
B

U
S

l
3

8

C
P

U
A

D
3

1
8

1

4
0

C

P
U

A
D

 1
1

(N
C

'
3

9

B
IN

C
)

1
1

O
W

IX
B

U
S

2

4
0

A

2
0

B

2
0

3

9
@

C

P
U

A
D

4
(3

)
4

2

C
P

U
A

D
1

2
1

N
C

I
41

C

iN
C

)
(1

Q
)P

tX
B

U
S

3

4
2

A
2

1

82
1

41

n
A

2
2

8

2
2

4

3

C
P
U
A
D
5
1
~
C
)

4
4

C

P
U

A
D

lJ
lN

C
I

4
3

D

IN
C

)
(1

0
1

P
IX

B
U

S
4

4

4

0
C

P
U

A
D

6
(N

C
)

4
6

R

fS
E

R
V

E
U

4

5

R
E

S
E

R
V

E
D

(1

O
)P

IX
B

U
S

b

4
6

A

2
3

8

2
3

4

5

C
P

U
A

D
7

(N
C

)
4

8

4
7

(1

Q
)P

IX
6

U
S

6

4
8

'0

':;

A

2
4

B

24

4
7

4
9

C

P
U

A
D

8
(N

C
)

,5
0

4

9

(1
0

)P
IX

6
U

S
7

5

0
00

'
A

2
5

B

2
5

;:r

A
2

6

8
2

6

A
2

7

8
2

7

55
;;t>

A

2
8

B

2
8

3:
c:

:
A

2
9

8

2
9

n(J
Q

A
3

0

8
3

0
o

c::
...

,
rJ

l
A

31

83
1

S
h

e
e
t

1
o

f
8

'0

..
..

Q
.....

.
;:

?V
1

0
'''

'
=

......
-
'-

C
)

-0
0

0

~..
j:>

..

)
)

)

co

-

I

1111'11 IIIIII~
 I I
 I

mllZzl ~m~m~~~~im ~~!m~ ~ ~ji~i~ i~iim~ 1~!3~3~g~~~~
.ii .ooii iDiOm .iii; .0

~--~~--~~--~ ~-~~~~- -~~--~ i~----

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 197

(II)...
o

M

11

I II

<ii ii.(i:i ciicii Iii

~-~~ ~-~~~-~~ ~--~~~---~~-

August 15, 1984
198 Professional Graphics Controller CD Copyright IBM Corporation 19H4

DO ... o
oj'..
Q)

Q)

.t:.
C/)

I

II

August 15, 1984
© Copyright IBM Corporation 19R4 Professional Graphics Controller 199

III

...

o

...
Ql

Ql

J::
en

August 15,1984
200 Professional Graphics Controller :,) Copyright IBM Corporation 19X4

co
'0
CD..
Q)

Q)

~~. ;1 B:

~
;1 B - ~I B'

~ ~
_ _ 9 ""

;1_
~

a ~

.J:.
tJ)

w,~·wr

~~~~~~ 
~ggtt~ 

~-~ 

August 15, 1984 
© Copyright IBM Corporation 1984 Professional Graphics ControUer 20 I 



I 

i 

, . , .-, , I ,0 

&~ 

. " 
i~ 

. . , N . , 
0 0 0< 

~~f~;~~803 ~ _ ,. 

I r"c2jl5&IS~:;~ 
"''''1"11 


l 


! a I 
~ 

-0 

.. 
~ 

CD 

'0 
..... 

~ 
CI) 

.. , . . 
o8$6o~o81 

. s~ 

" 
~ 

IVo 8t ~ ! Z ~ 

:'>~llU
~8 s~ ~ ~ li d , . ~ !:: rr 9 ~ Ii" - N _~ 

August 15, 1984 
202 Professional Graphics ControUer '.0 Copyright IBM Corporation 1984 



.c 

-----....: ~---.--~ ~~~ ~-~ 3"--~ 
GO 

i"--"'~ ~ '0 
GO~~~~~~~~ .:;;~~:~~:;: 

iiiiiiiiiiii.ii.iiii. ~~~~~~~ immi ii~~ii~~ .. 
GI 
GI 

I II II I I11I1 I (I)111111 

I11I 1II111 111111 

~~~~i~~~ ~d ~mm~~~~~ ~~~~~~~ J) :n ~g ;: ;: 
ttttt~~ 'i: 1:'i:" '!l~ ~E--~ '!l~ -,-- ~ ~•

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics ControUer 203

August 15, 1984
204 Professional Graphics Controller (i) Copyright IBM Corporation 191;4

Glossary

algorithm. A finite set of well-defined rules for the solution of a
problem in a finite number of steps.

alphanumeric (A/N). Pertaining to a character set that contains
letters, digits, and usually other characters, such as punctuation
marks.

American National Standard Code for Information Exchange
(ASCII). The standard code, using a coded character set
consisting of 7-bit coded characters (8 bits induding parity
check) used for information exchange between data processing
systems, data communication systems, and associated equipment.
The ASCII set consists of control characters and graphic
characters.

A/N. 	Alphanumeric

ASCII. American National Standard Code for Information
Exchange.

Cartesian coordinates. A system of coordinates for locating a
point on a plane by its distance from each of two intersecting
lines, or in space by its distance from each of three mutually
perpendicular planes.

cathode ray tube (CRT). A vacuum tube in which a stream of
electrons is projected onto a fluorescent screen producing a
luminous spot. The location of the spot can be controlled.

~ 	cathode ray tube display (CRT display). (1) A CRT used for
displaying data. For example, the electron beam can be
controlled to form alphanumeric data by use of a dot matrix. (2)
Synonymous with monitor.

August 15, 1984
© Copyright IBM Corporation 1984 Glossary-l

clipping. In computer graphics, removing parts of a display image

that lie outside a window.

color cone. An arrangement of the visible colors on the surface of

a double-ended cone where lightness varies along the axis of the

cone, and hue varies around the circumference. Lightness ~

includes both the intensity and saturation of color.

complement. A number that can be derived from a specified

number by subtracting it from a second specified number.

coordinate space. In computer graphics, a system of Cartesian

coordinates in which an object is defined.

cursor. (1) In computer graphics, a movable marker that is used

to indicate a position on a display. (2) A displayed symbol that

acts as a marker to help the user locate a point in text, in a system

command, or in storage. (3) A movable spot of light on the

screen of a display device, usually indicating where the next

character is to be entered, replaced, or deleted.

debounce. (1) An electronic means of overcoming the

make/break bounce of switches to obtain one smooth change of

signal level. (2) The elimination of undesired signal variations

caused by mechanically generated signals from contacts.

display. (1) A visual presentation of data. (2) A device for visual

presentation of information on any temporary character imaging

device. (3) To present data visually. (4) See cathode ray tube

display.

display attribute. In computer graphics, a particular property that

is assigned to all or part of a display; for example, low intensity,

green color, blinking status.

display element. In computer graphics, a basic graphic element

that can be used to construct a display image; for example, a dot,

a line segment, a character. ~

display group. In computer graphics, a collection of display

elements that can be manipulated as a unit and that can be further

combined to form larger groups.

August 15, 1984
Glossary-2 © Copyright IBM Corporation 1984

display image. In computer graphics, a collection of display
elements or display groups that are represented together at any
one time in a display space.

display space. In computer graphics, that portion of a display
~ 	surface available for a display image. The display space may be

all or part of a display surface.

display surface. In computer graphics, that medium on which
display images may appear; for example, the entire screen of a
cathode ray tube.

drawing primitive. A group of commands that draw defined
geometric shapes.

field-programmable-Iogic-sequencer (FPLS). An integrated circuit.
containing a programmable, read-only memory that responds to
external inputs and feedback of its own outputs.

FIFO (first-in-first-out). A queuing technique in which the next
item to be retrieved is the item that has been in the queue for the
longest time.

FPLS. 	Field-programmable-Iogic-sequencer.

hither plane. In computer graphics, a plane that is perpendicular
to the line joining the viewing reference point and the view point
and which lies between these two points. Any part of an object
between the hither plane and the view point is not seen. See also
yon plane.

intensity. In computer graphics, the amount of light emitted at a
display point.

~ 	interleave. To arrange parts of one sequence of things or events
so that they alternate with parts of one or more other sequences
of the same nature and so that each sequence retains its identity.

August 15, 1984
© Copyright IBM Corporation 1984 	 Glossary-3

least-significant digit. The rightmost digit.

look-up table (LUT). (1) A technique for mapping one set of

values into a larger set of values. (2) In computer graphics, a

table that assigns a color value (red, green, blue intensities) to a

color index.

luminance. The luminous intensity per unit projected area of a

given surface viewed from a given direction.

LUT. Look-up table.

mask. (1) A pattern of characters that is used to control the

retention or elimination of portions of another pattern of

characters. (2) To use a pattern of characters to control the

retention or elimination of portions of another pattern of

characters.

matrix. (1) A rectangular array of elements, arranged in rows and

columns, that may be manipulated according to the rules of matrix

algebra. (2) In computers, a logic network in the form of an array

of input leads and output leads with logic elements connected at

some of their intersections.

mode. (1) A method of operation; for example, the binary mode,

the interpretive mode, the alphanumeric mode. (2) The most

frequent value in the statistical sense.

modeling transformation. Operations on the coordinates of an

object (usually matrix multiplications) which cause the object to

be rotated about any axis, translated (moved without rotating),

and/or scaled (changed in size along any or all dimensions). See

also viewing transformation.

modulo-N check. A check in which an operand is divided by a

number N (the modulus) to generate a remainder (check digit)

that is retained with the operand. For example, in a modulo-7 ~

check, the remainder will be 0, 1, 2, 3, 4, 5, or 6. The operand is

later checked by again dividing it by the modulus; if the

remainder is not equal to the check digit, an error is indicated.

August 15, 1984
Glossary-4 © Copyright IBM Corporation 1984

modulus. In a modulo-N check, the number by which the operand
is divided.

monitor. Synonym for cathode ray tube display (CRT display).

r--.., most-significant digit. The leftmost (non-zero) digit.

nanosecond (ns). 0.000000001 second.

ns. Nanosecond; 0.000000001 second.

PEL. Picture element.

picture element (PEL). The smallest displayable unit on a display.

raster. A predetermined pattern of lines that provides uniform
coverage of a display space.

saturation. In computer graphics, the purity of a particular hue. A
color is said to be saturated when at least one primary color (red,
green, or blue) is completely absent.

scaling. In computer graphics, enlarging or reducing all or part of
a display image by mUltiplying the coordinates of the image by a
constant value.

vector. In computer graphics, a directed line segment.

view point. In computer graphics, the origin from which angles
and scales are used to map virtual space into display space.

viewing reference point. In computer graphics, a point in the
,.-...., modeling coordinate space that is a defined distance from the

view point.

viewing transformation. Operations on the coordinates of an
object (usually matrix multiplications) which cause the view of

August 15, 1984
© Copyright IBM Corporation 1984 Glossary-5

the object to be rotated about any axis, translated (moved without
rotating), and/or scaled (changed in size along any or all
dimensions). Viewing transformations differ from modeling
transformations in that perspective is taken into account. See also
modeling transformation.

viewplane. In computer graphics, a two-dimensional coordinate
system onto which images are projected and which contains the
display space.

viewport. In computer graphics, a predefined part of the display
space.

virtual space. In computer graphics, a space in which the
coordinates of the display elements are expressed in terms of user
coordinates.

window. (1) In computer graphics, a predefined part of the virtual
space. (2) In computer graphics, the visible area of a viewplane
mapped into a viewport.

yon plane. In computer graphics, a plane that is perpendicular to
the line joining the viewing reference point and the view point and
which lies beyond the viewing reference point. Any part of an
object beyond the yon plane is not seen. See also hither plane.

August 15, 1984
Glossary-6 © Copyright IBM Corporation 1984

Index

A

absolute draw
DRAW (2D) 108

absolute move
MOVE (2D) 135
MOVE3 (3D) 137

alphanumeric mode 20, 21, 22, 23
alphanumeric operation 29
ARC 86
AREA 87
area fill 87
area fill command description 68
area fill to boundary color 88

~ area pattern 89
area pattern mask 61
AREABC 88
AREAPT 89
ASCII commands

ARC 86
AREA 87
AREABC 88
AREAPT 89
CA 90
CIRCLE 91
CLBEG 92
CLDEL 93
CLEARS 94
CLEND 95
CLIPH 96
CLIPY 97

~ CLOOP 98
CLRD 99
CLRUN 100
COLOR 101

August 15,1984
© Copyright IBM Corporation 1984 Index-l

CONVRT 102
CX 103
DISPLA 104
DISTAN 105
DISTH 106
DISTY 107
DRAW 108
DRAWR 109
DRAWR3 111
DRAW3 110
ELIPSE 112
FILMSK 113
FLAGRD 114
FLOOD 116
IMAGER 117
IMAGEW 118
LINFUN 119
LINPAT 120
list of commands 83, 84, 85
LUT 121
LUTINT 122
LUTRD 123
LUTSAV 124
MASK 125
MATXRD 126
MDIDEN 127
MDMATX 128
MDORG 129
MDROTX 130
MDROTY 131
MDROTZ 132
MDSCAL 133
MDTRAN 134
MOVE 135
MOVER 136
MOVER3 138
MOVE3 137
POINT 139
POINT3 140
POLY 141
POLYR 142
POLYR3 144
POLY3 143

August 15, 1984
Index-2 © Copyright IBM Corporation 1984

PRMFIL 145

PROJCT 146

RECT 147

RECTR 148

RESETF 149

SECTOR 151

TANGLE 152

TDEFIN 153

TEXT 154

TEXTP 155

TJUST 156

TSIZE 157

VWIDEN 158

VWMATX 159

VWPORT 160

VWROTX 161

VWROTY 162

VWROTZ 163

VWRPT 164

WAIT 165

WINDOW 166

ASCII communications 78,79
~

B

basic operations

emulator 28

high-function graphics 32

bit planes 60

block diagrams

display RAM address control 17

emulator address control 11

graphics emulator 13

high-function graphics display memory 15

look-up table and video output section 18

microprocessor section 6

Professional Graphics Controller 2

system-bus interface 4

timing and control section 19

video control generator section 8

August 15, 1984

© Copyright IBM Corporation 1984 Index-3

c
CA 90

color / fills/ patterns

command list description 71,72

command lists

CIRCLE 91

CLBEG 92

CLDEL 93

clear screen 94

CLEARS 94

CLEND 95

clip hither 96

clip yon 97

CLIPH 96

clipping 61

CLIPY 97

CLOOP 98

CLRD 99

CLRUN 100

COLOR 101

color-select register 36, 37

AREA 87

AREABC 88

AREAPT 89

CLEARS 94

COLOR 101

FILMSK 113

FLOOD 116

LINFUN 119

LINPAT 120

list of commands 83,84, 85

MASK 125

PRMFIL 145

command list begin 92

command list delete 93

command list end 95

command list loop 98

command list read 99

command list run 100

CLBEG 92

CLDEL 93

Index-4
August 15, 1984

© Copyright IBM Corporation 1984

CLEND 95

CLOOP 98

CLRD 99

CLRUN 100

list of commands 83, 84, 85

communication protocol 80
Communications 78, 79
communications ASCII (command) 90
communications hexadecimal (command) 103
components

display memory 15,16,17

display RAM address control 17

emulator address control 11, 12

graphics emulator 13, 14

high-function graphics display memory 15, 16

list of major components 3, 4, 81

look-up table and video output section 18

microprocessor section 6, 7

system-bus interface 4, 5

timing and control section 19

video control generator section 8,9, 10

connector specifications 180
convert 102
CONVRT 102
coordinate space 45,46,47,48,49,50,51,52,53,54,55
coordinate transformations 47
current color 58
current point 57
CX 103

D

default LUT selections for LUTINT 168
defining commands

AREAPT 89
DISTAN 105
DISTH 106
DISTY 107
list of commands 83, 84, 85
MDMATX 128

August 15,1984
© Copyright IBM Corporation 1984 Index-S

MDORG 129
MDTRAN 134
TDEFIN 153
VWMATX 159
VWPORT 160
VWRPT 164
WINDOW 166

DISPLA 104
display 104
display control 58, 59, 60, 62

drawing modes 58
drawing patterns 59
masks 60
primitive fills 59
viewing 62

display memory 15, 16, 17
display RAM address control 17
DISTAN 105
distance 105
distance hither 106
distance yon 107
DISTH 106
DISTY 107
DRAW 108
draw in 3D 110
draw relative 109
draw relative in 3D 111
drawing commands

ARC (2D) 86
CIRCLE (2D) 91
DRAWR3 (3D) 111
DRAW3 (3D) 110
ELIPSE (2D) 112
list of commands 83, 84, 85
POLY (2D) 141
POLYR 142
POLYR3 (3D) 144
POLY3 (3D) 143
RECT (2D) 147
RECTR (2D) 148
SECTOR 151
TEXT 154
TEXTP 155

August 15, 1984
Index-6 © Copyright IBM Corporation 1984

drawing modes 58

drawing patterns 59,60

drawing primitives 63, 64, 65, 66, 67, 68

area fill command description 68

linear forms 65

~ 	 move command description 63
nonlinear forms 66
point command description 63
two-dimensional and three-dimensional command format 63
vectors 64

DRAWR 109

DRAWR3 111

DRAW3 110

E

ELIPSE 112

ellipse 112

emulator

alphanumeric mode 20, 21, 22, 23
color-select register 36,37
description of basic operations 28
graphics mode 24,25,26,27
memory requirements 42
mode register summary 40
mode-select register 38
programming the mode control and status register 35
programming the 6845 CRT controller 33, 34
sequence of events for changing modes 42
status register 41
320-by-200 color/graphics mode 24
40-by-25 alphanumeric mode 22
640-by-200 black-and-white graphics mode 27
80-by-25 alphanumeric mode 23

emulator address control 11, 12

emulator card logic diagrams 191

error handling 82

August 15, 1984
.;0 Copyright IBM Corporation 19S4 	 Index-7

F

fill mask 113
FILMSK 113
flag read 114
FLAGRD 114
FLOOD 116

G

graphics emulator 13, 14
graphics mode 24, 25, 26, 27
graphics operation 30, 31

H

hexadecimal commands
hex AA (CLIPH) 96
hex AB (CLIPY) 97
hex AF (CONVRT) 102
hex AO (VWIDEN) 158
hex Al (VWRPT) 164
hex A3 (VWROTX) 161
hex A4 (VWROTY) 162
hex A5 (VWROTZ) 163
hex A7 (VWMATX) 159
hex A8 (DISTH) 106
hex A9 (DISTY) 107
hex BO (PROJCT) 146
hex Bl (DISTAN) 105
hex B2 (VWPORT) 160
hex B3 (WINDOW) 166
hex CO (AREA) 87
hex C 1 (AREABC) 88

August 15, 1984
Index-8 © Copyright IBM Corporation 1984

hex DO (DISPLA) 104

hex D8 (IMAGER) 117

hex D9 (IMAGEW) 118

hex EA (LINP AT) 120

hex EB (LINFUN) 119

hex EB (MASK) 125

hex EC (LUTINT) 122

hex ED (LUTSAV) 124

hex EE (LUT) 121

hex EF (FILMSK) 113

hex E7 (AREAPT) 89

hex E9 (PRMFIL) 145

hex OF (CLEARS) 94

hex 04 (RESETF) 149

hex 05 (WAIT) 165

hex 06 (COLOR) 101

hex 07 (FLOOD) 116

hex 08 (POINT) 139

hex 09 (POINT3) 140

hex 10 (MOVE) 135

hex 11 (MOVER) 136

hex 12 (MOVE3) 137

hex 13 (MOVER3) 138

hex 20 (DRAW) 108

hex 21 (DRA WR) 109

hex 22 (DRAW3) 110

hex 23 (DRA WR3) 111

hex 3C (ARC) 86

hex 3D (SECTOR) 151

hex 30 (POLY) 141

hex 31 (POLYR) 142

hex 32 (POLY3) 143

hex 33 (POLYR3) 144

hex 34 (RECT) 147

hex 35 (RECTR) 148

hex 38 (CIRCLE) 91

hex 39 (ELIPSE) 112

hex 43 (CA) 90

hex 43 (CX) 103

hex 50 (LUTRD) 123

hex 51 (FLAGRD) 114

hex 52 (MATXRD) 126

hex 70 (CLBEG) 92

August 15, 1984
© Copyright IBM Corporation 1984 Index-9

hex 71 (CLEND) 95
hex 72 (CLRUN) 100
hex 73 (CLOOP) 98
hex 74 (CLDEL) 93
hex 75 (CLRD) 99
hex 80 (TEXT) 154
hex 81 (TSIZE) 157
hex 82 (TANGLE) 152
hex 83 (TEXTP) 155
hex 84 (TDEFIN) 153
hex 85 (TJUST) 156
hex 90 (MDIDEN) 127
hex 91 (MDORG) 129
hex 92 (MDSCAL) 133
hex 93 (MDROTX) 130
hex 94 (MDROTY) 131
hex 95 (MDROTZ) 132
hex 96 (MDTRAN) 134
hex 97 (MDMATX) 128

high-function graphics
alphanumeric operation 29
ASCII communications 78,79
communication protocol 80, 81
communications 78, 79
coordinate space 45,46,47,48,49,50,51,52,53,54,55
coordinate transformations 47
current color 58
current point 57
default LUT selections for LUTINT 168
description of basic operations 32
error handling 82
graphics operation 30, 31
list of commands 83, 84, 85
modeling matrix 49,50,51,52,53
programming considerations 43, 44, 45
run-length encoding 167
state 0 168, 169
state 1 170
state 255 178
state 5 176, 177
states 2-4 171,173,174,175
three-dimensional hither/yon clipping 54
three-dimensional transformation 49

August 15, 1984
Index-tO © Copyright IBM Corporation 1984

three-dimensional viewing to two-dimensional virtual
projection 55

two-dimensional transformation 47, 48
video generation 56, 57, 58
viewer reference-point matrix 53
viewing matrix 53

high-function graphics display memory 15, 16

I

image processing 74
image read 117
image transmission

IMAGER 117
IMAGEW 118
list of commands 83, 84, 85

image write 118
IMAGER 117
IMAGEW 118
interface information

connector specifications 180
monitor interface 180

L

line function 119
line pattern 120
linear forms 65,66
LINFUN 119
LINPAT 120

~ logic diagrams
emulator card 183, 191
memory card 183, 196
processor card 183, 184

look-up table 121
list of commands 83, 84, 85

August 15, 1984
~) Copyright IBM Corporation 1984 Index-II

LUT 121
LUTINT 122
LUTRD 123
LUTSAV 124

look-up table and video output section 18
look-up table description 73
look-up table initialize 122
look-up table read 123
look-up table save 124
LUT 121
LUTINT 122
LUTRD 123
LUTSAV 124

M

MASK 125
masks 60, 61, 62

bit planes 60
clipping 61

matrix read 126
MATXRD 126
MDIDEN 127
MDMATX 128
MDORG 129
MDROTX 130
MDROTY 131
MDROTZ 132
MDSCAL 133
MDTRAN 134
memory card logic diagrams 196
memory requirements 42
microprocessor section 6, 7
mode register summary 40
mode set/read

CA 90
CX 103
DISPLA 104
FLAGRD 114
list of commands 83, 84, 85

August 15, 1984
Index-12 © Copyright IBM Corporation 1984

RESETF 149

WAIT 165

mode-select register 38

modeling identity 127

modeling matrix 49,50,51,52,53, 128

modeling origin 129

modeling rotate x axis 130

modeling rotate y axis 131

modeling rotate z axis 132

modeling scale 133

modeling transformations

list of commands 83,84, 85

MATXRD 126

MDIDEN 127

MDMATX 128

MDORG 129

MDROTX 130

MDROTY 131

MDROTZ 132

MDSCAL 133

MDTRAN 134

~ modeling translation 134

monitor interface 180

MOVE 135

move command description 63

move in three dimensions 137

move relative 136

move relative in three dimensions 138

MOVER 136

MOVER3 138

MOVE3 137

N

~ nonlinear forms 66,67

August 15,1984
© Copyright IBM Corporation 1984 Index-13

p

POINT 139
point command description 63
point in three dimensions 140
POINT3 140
POLY 141
polygon 141
polygon in three dimensions 143
polygon relative 142
polygon relative in 3D 144
POLYR 142
POLYR3 144
POLY3 143
primitive fill 145
primitive fills 59, 60
PRMFIL 145
processor card logic diagrams 184
programming considerations

ASCII communications 78, 79
color-select register 36, 37
communication protocol 80, 81
communications 78, 79
coordinate space 45,46,47,48,49,50,51,52,53,54,55
coordinate transformations 47
current color 58
current point 57
default LUT selections for LUTINT 168
error handling 82
list of commands 83, 84, 85
memory requirements 42
mode register summary 40
mode-select register 38
modeling matrix 49,50,51,52,53
programming considerations for the high-function graphics
mode 43,44,45

programming the mode control and status register 35
programming the 6845 CRT controller 33,34
run-length encoding 167
sequence of events for changing modes 42
state 0 168, 169
state 1 170

Index-14

state 255 178
state 5 176, 177
states 2-4 171,173,174,175
status register 41
three-dimensional hither/yon clipping 54
three-dimensional transformation 49
three-dimensional viewing to two-dimensional virtual

projection 55
two-dimensional transformation 47, 48
video generation 56, 57, 58
viewer reference-point matrix 53
viewing matrix 53

programming the mode control and status register 35
programming the 6845 CRT controller 33,34
PROJCT 146
projection 146

R

read-back commands 75,76
reading commands

IMAGER 117
list of commands 83, 84, 85
LUTRD 123
MATXRD 126

RECT 147
rectangle 147
rectangle relative 148
RECTR 148
relative draw

DRAWR (2D) 109
relative move

MOVER 136
MOVER3 (3D) 138

~ reset commands
list of commands 83, 84, 85
MDIDEN 127
VWIDEN 158

reset flags 149
RESETF 149

August 15, 1984
© Copyright IBM Corporation 19H4 Index-I 5

rotate commands
list of commands 83, 84, 85
MDROTX 130
MDROTY 131
MDROTZ 132
VWROTX 161
VWROTY 162
VWROTZ 163

run-length encoding 167

s

save commands

list of commands 83, 84, 85
SECTOR 151
select commands

DISPLA 104
LINFUN 119
list of commands 83, 84, 85

sequence of events for changing modes 42
set commands

CA 90
CLIPH 96
CLIPY 97
COLOR 101
CX 103
FILMSK 113
FLAGRD 114
LINPAT 120
list of commands 83, 84, 85
LUT 121
LUTSAV 124
MASK 125
MDSCAL 133
POINT (2D) 139
POINT3 (3D) 140
PRMFIL 145
PROJCT 146
TANGLE 152
TJUST 156

August 15, 1984
Index-I 6 © Copyright IBM Corporation 1984

TSIZE 157
specifications

power requirements 181
size 181

~ weight 181
state 0 168, 169
state 1 170
state 255 178
state 5 176, 177
states 2-4 171,173,174,175
status register 41
system reset 77
system-bus interface 4,5

T

TANGLE 152
~ TDEFIN 153

text 154
list of commands 83, 84, 85
TANGLE 152
TDEFIN 153
TEXT 154
TEXTP 155
TJUST 156
TSIZE 157

text angle 152
text define 153
text description 69, 70
text justify 156
text programmed 155
text size 157
TEXTP 155
three-dimensional drawing

DRAWR3 111
DRAW3 110
MOVER3 138
MOVE3 137
POINT3 140
POLYR3 144

August 15, 1984 Index-17© Copyright IBM Corporation 1984

v

POLY3 143
three-dimensional hither / yon clipping 54
three-dimensional transformation 49
three-dimensional viewing to two-dimensional virtual
projection 55

timing and control section 19
TJUST 156
TISZE 157
two-dimensional and three-dimensional command format 63
two-dimensional drawing

ARC 86
CIRCLE 91
DRAW 108
DRAWR 109
ELIPSE 112
MOVE 135
MOVER 136
POINT 139
POLY 141
POLYR 142
RECT 147
RECTR 148
SECTOR 151

two-dimensional transformation 47,48

vectors 64
video control generator section 8, 9, 10
video generation 56, 57, 58
viewer reference-point matrix 53
viewing 62
viewing identity 158
viewing matrix 53, 159
viewing reference point 164
viewing rotate x axis 161
viewing rotate y axis 162
viewing rotate z axis 163
viewport 160
viewport/ window / projection

August 15, 1984
Index-I8 © Copyright IBM Corporation 1984

CLIPH 96
CLIPY 97
CONVRT 102
DISTAN 105
DISTH 106

/"""'., DISTY 107
PROJCT 146
VWIDEN 158
VWMATX 159
VWPORT 160
VWROTX 161
VWROTY 162
VWROTZ 163
VWRPT 164
WINDOW 166

VWIDEN 158
VWMATX 159
VWPORT 160
VWROTX 161
VWROTY 162
VWROTZ 163

/"""'., VW P R T 164

w

WAIT 62,165
WINDOW 166
write commands

IMAGEW 118
list of commands 83, 84, 85

Numerals

320-by-200 color/graphics mode 24
40-by-25 alphanumeric mode 22
640-by-200 black-and-white graphics mode 27
80-by-25 alphanumeric mode 23

August 15, 1984
© Copyright IBM Corporation 1984 Index-19

August 15, 1984
Index-20 © Copyright IBM Corporation 1984

	1
	2
	3
	4
	5
	6

